
 
A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories. 

International Research Journal of Mathematics, Engineering and IT (IRJMEIT) 

7 | P a g e  

 

International Research Journal of  Mathematics, Engineering and IT 
Vol. 3, Issue 7,  July  2016           IF- 3.563                 ISSN: (2349-0322) 

© Associated   Asia   Research   Foundation   (AARF)  
Website: www.aarf.asia Email : editor@aarf.asia , editoraarf@gmail.com  

 
TWO STAGE LIU REGRESSION ESTIMATOR 

 

 

Issam Dawoud
1
 and Selahattin Kaçıranlar

1
 

 
1
Department of Statistics, Faculty Science and Letters, Çukurova University, Adana, Turkey. 

 

 

ABSTRACT 

This paper introduces a new estimator for multicollinearity and autocorrelated errors. We 

propose the Two Stages Liu estimator (TL) for the multiple linear regression model which suffers 

from autocorrelation AR(1) and multicollinearity problems. We use a mixed method to apply the 

two stages least squares procedure (TS) for deriving the TL estimator. Furthermore, a Monte 

Carlo study and a real data are carried out to investigate the performance of the proposed 

estimator over the others. 
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1. Introduction 

 

     Consider a multiple linear regression model of the form                                                        

 

),0(~, 2

nXY                                          (1) 

 

where Y  is an n ×1 vector of observations on the dependent variable, X  is an n × p known 

design matrix of rank p,   is an p × 1 vector of unknown parameters, and   is an n × 1 vector of 

random errors with zero mean and variance n
2  , where n  is an identity matrix of order n . 

 

     The ordinary least squares (OLS) estimator of   is defined as: 
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                                                             YXXX ')'(ˆ 1 .                                                          (2) 

 

Both the OLS estimator and its covariance matrix heavily depend on the characteristics of the 

XX '  matrix. If XX '  is ill-conditioned, i.e. the column vectors of X  are linearly dependent, the 

OLS estimators are sensitive to a number of errors. For example, some of the regression 

coefficients may be statistically insignificant or have the wrong sign, and they may result in wide 

confidence intervals for individual parameters. With ill conditioned XX '  matrix, it is difficult to 

make valid statistical inferences about the regression parameters. One of the most popular 

estimator dealing with multicollinearity is the ordinary ridge regression (ORR) estimator 

proposed by Hoerl and Kennard (1970a) and is defined as 

 

                                    ˆ))'((')'(ˆ 111   XXkYXkXX ppk ,                              (3) 

 

where the constant 0k  is known as the biasing parameter.  

 

Another biased estimator is Stein (SLS) estimator which is given as (see, Stein (1956), James 

and Stein (1961)): 

 

 ˆˆ cs  ,                                                        (4) 

 

which it is a linear function of c  and 10  c , where )
ˆ'ˆ

)ˆ()'ˆ(
1(





XX

XYXY

n

a
c




  and 0a  

is the shrinkage factor. 

 

The Liu estimator (LE) is defined, see for example Liu (1993), Akdeniz and Kaçıranlar (1995) 

and Kaçıranlar et. al. (1999), as follows 

                  

 ˆ)'()'()ˆ'()'(ˆ 11

pppd dXXXXdYXXX  
                 (5) 

 

where d  is a constant, such that 10  d . 
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The advantage of the LE estimator over the ORR estimator is that the LE estimator is a linear 

function of d, so it is easy to choose d than to choose k in the ORR estimator. 

 

     Since the matrix XX '  is symmetric, it exists an orthogonal matrix ]...,,,[ 21 pUUUU  , such 

that  ),...,,()'(' 21 pdiagUXXU  , where the i  is the i
th

 eigenvalue of XX ' , and the 

columns of  U  are normalized eigenvectors associated with eigenvalues. Thus, the model 

  XY  can be written in the canonical form as: 

                                                           

       ZY ,                                                       (6) 

 

where XUZ   and  'U . The OLS, ORR, SLS and LE estimators for (6) are respectively 

given as: 
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.                                   (7) 

 

     Let us consider the multiple linear regression model  

 

),0(~, 2VXY   .                                           (8) 

 

Aitken (1935) derived the generalized least squares (GLS) estimator as: 

 

                                                      YVXXVXGLS

111 ')'(ˆ  ,                                                (9) 

where V  is a known positive definite (p.d.) matrix . 

 

Trenkler (1984) proposed the ridge estimator of   in the general linear regression model (GRR) 

as: 
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                                              YVXkXVX pGRR

111 ')'(ˆ   .                                      (10) 

 

He concluded that the Ridge Regression estimators which take the autocorrelation into account 

can perform better than the other methods when V matrix is known. 

 

Stein (1975) proposed the Generalized Stein (GS) estimator of   in the general linear regression 

model as: 

GLSGS f ˆˆ  ,                                                        (11) 

 

which it is a linear function of 10  f , where )
ˆ'ˆ

)ˆ()'ˆ(
1(

1

1

GLSGLS

GLSGLS

XVX

XYVXY

n

a
f






 
 .  

 

Kaçıranlar (2003) combined the Liu estimator of Equation (5) with the GLS of Equation (9) to 

obtain the Generalized Liu estimator (GLE) which is defined as:         

                                   

                                  GLSppGLE dXVXXVX  ˆ)'()'(ˆ 111  
.                            (12) 

 

     So, the problem of multicollinearity has also been discussed when the violation of the 

assumption of the autocorrelation of errors is also faced by many researchers, see for example, 

Gosling et al. (1982), Firinguetti (1989), Bayhan and Bayhan (1998), Kaçıranlar (2003), Özkale 

(2008), Alheety and Kibria (2009), Güler and Kaçıranlar (2009), Şiray et al. (2014) and Özkale 

(2014).   

 

     Using the canonical form, The GLS, GRR, GS and GLE are respectively given as: 

 

GLSppGLE

GLSGS

GLSpGRR

GLS

d

f

k

YVXQ
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where  ),...,,()'(' 21

1

pdiagQXVXQ  , i  is the i
th

 eigenvalue of XVX 1'  . 

 

     In this paper, we introduce a new estimator which is called the Two Stages Liu estimator (TL) 

by mixing the Two Stages procedure (TS) with the LE estimator. So, we examine the 

multicollinearity and autocorrelation problems simultaneously, define the TL estimator in the 

linear regression model with )1(AR  correlated errors, and find the characteristics of this 

estimator in Sect. 2. Then, in Sect. 3, some interesting transforms of the TL estimator will be 

discussed. Then, we give a simulation study in Sect. 4. Finally, we give an application of a real 

data in Sect. 5.  

 

2. The Two Stages Liu Estimator (TL) 

 

     The model with first order autoregressive process )1(AR  has the form: 

 

ntttt ,...,3,2,1                                                  (14) 

 

where   is the autocorrelation parameter (coefficient) ( 1||  ), t  is a normal distributed 

random variable, which satisfies 

 



 


.,0

0,
)(),,0(~

2

2

else

sif
EN sttt


                                (15) 

 

     If V is an nn  known p.d. symmetric matrix, the simplest solution to the estimated model (8) 

when plagued with the problems of multicollinearity and autocorrelation in errors, is the use of 

GLS as in (9), but V matrix is seldom known. If V matrix is unknown, it is common in practice to 

use the estimated matrix of V in order to find the estimated generalized least square estimator 

(EGLSE) or Two Stages method estimator that is more efficient than the GLSE.   

 

So, let us reform the Two Stages procedure.  
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Using the matrix P  to transform the model in (8) yields  

  

 PPP  XY ,  

which is equivalent to 

 

                                                        ***   XY ,                                                    (16) 

 

where 0*)( E  and 
nCov  2*)(  . Therefore, the OLS estimator for the model (16) is:  

 

**'*)*'(ˆ 1 YXXXTS

                                                (17) 

 

where 
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Note that XVXXXXX 1'''**'  PP  and  YVXYXYX 1'''**'  PP , where 
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PPV                (18) 

and  1ˆ V  is the estimated matrix that is in (18) with   replaced by ̂ . 

 

     A number of ̂ ’s alternatives have been used in the literature, Judge, et. al. (1985): 

 

1. The sample correlation coefficient. In this case, the estimator is  
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 , (19) 

 

where the disturbances ( st ' ), because they are unobservable, have been replaced by the OLS 

residuals ntxYYY ttttt ...,,2,1,ˆˆˆ   , where tx  is the symbol of a ( p1 ) vector 

containing the t-th observation on p  predictors. 

 

 

 

2. The Durbin-Watson Statistic. This statistic, 
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.                                                   (20) 

 

is often used to test the existence of autocorrelation. 

 



 
A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories. 

International Research Journal of Mathematics, Engineering and IT (IRJMEIT) 

14 | P a g e  

An estimator for   that is approximately equal to 
1r , namely  

  

d5.01ˆ  .                                                        (21) 

 

So, after estimated   by ̂ , we can find 1ˆ V . And then, the TS is given as (Prais and Winsten 

(1954)): 

 

                                              YVXXVXTS

111 ˆ')ˆ'(ˆ  .                                               (22) 

 

Eledum and Zahri (2013) proposed the TR estimator of   in the general linear regression model 

as: 

 

                                      YVXkXVX pTR

111 ˆ')ˆ'(ˆ   .                                            (23) 

 

Chaturvedi and Shukla (1990) proposed the Two Stages Stein (STS) estimator of   in the 

general linear regression model as: 

 

 TSSTS f ˆˆˆ  , (24) 

 

which it is a linear function of f̂  and 1ˆ0  f , where )
ˆˆ'ˆ

)ˆ(ˆ)'ˆ(
1(ˆ

1

1
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n

a
f






 
 .  

 

     To estimate the linear model with both multicollinearity and autocorrelation AR(1) problems 

simultaneously, we propose the mixed estimator, which is developed by mixing Equation  (5) 

with (22). Therefore, the TL estimator is 
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where 10  d  and 1ˆ V  is the estimated 1V  matrix which it is defined in (18). 

 

     In order to compare the performance of any estimator with others, a criterion for measuring 

the goodness of an estimator is required. For this purpose, the matrix mean square error (MMSE) 

criterion is used to measure the goodness of an estimator. We note that for any estimator 
~

 of 

 , its MMSE is defined as 

 

)
~

()
~

()
~

()
~

)(
~

()
~

(   BiasBiasCovEMSE                  (26) 

 

and the scalar mean square error (mse) is obtained as follows 

))
~

tr(MSE()
~

(  mse .                                              (27) 

 

3. Some Interesting Transforms of the TL Estimator 

 

     In this section, we use some properties of the symmetrical matrices to improve the results 

above by using the eigenvalues and the eigenvectors. Recall that XVX 1ˆ'   is a symmetric matrix 

(correlation form), therefore it exists an orthogonal matrix Q  such that 

 

 ˆ)ˆ,...,ˆ,ˆ()ˆ'(' 21

1

pdiagQXVXQ  ,                                  (28) 

 

where î  is the i
th

 eigenvalue of the matrix XVX 1ˆ'  , the columns of Q  are normalized 

eigenvectors associated with the eigenvalues. Thus, Eledum and Zahri (2013) rewrote the TS 

estimator and the TR estimator respectively as follows: 

     

,ˆ'ˆˆ
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1
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1
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                                 (29) 
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where **YXr  is the correlation matrix between *X  and *Y and 
jQ  represents the j

th
 column of 

the orthogonal matrix Q . 

 

     Thus, we can rewrite the STS estimator and the proposed TL estimator respectively as 

follows: 

 

**

1

'1

**

1 ˆˆ'ˆˆˆ
YX

p

i

jjiYXSTS rQQfrQQf 


   ,                              (31) 

 **

1

'11

**

11 ˆ)ˆ()1ˆ('ˆ)ˆ()ˆ(ˆ
YX

p

i

jjiiiYXppTL rQQdrQdQ 


   .      (32) 

 

Using canonical form: 

 

                                                         ***   ZY ,                                                (33) 

 

where QXZ *  and  '* Q . Thus, Eledum and Zahri (2013) rewrote the TS estimator and 

the TR estimator respectively as follows: 

                                 YVXQYZZZTS

111* ˆˆ*')'(ˆ   ,                                            (34) 

 

                            YCYVXk pTR 1

11* ˆ)ˆ(ˆ   .                                              (35) 

 

The STS estimator rewrite as follows: 

 

** ˆˆˆ
TSSTS f   .                                                         (36) 

 

Thus, we can rewrite the proposed TL estimator as follows: 

 

*1* ˆ)ˆ()ˆ(ˆ
TSppTL d   

,                                          (37) 

 

YCYVXd ppTL 2

111* ˆˆ)ˆ()ˆ(ˆ   .                              (38) 
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For practical purposes, we have to replace these unknown parameters by some suitable estimates. 

Liu (1993) gave the estimates of d  by analogy with the estimate of k  in ridge estimators. 

Following the method of Liu (1993), some of these estimates are defined as 
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where 0h  and  *ˆ
TS  and 2

TS are the TS estimates of   and 
2 .  

 

     A very important issue in the study of ridge regression is how to find an appropriate 

parameter k . When k  is estimated from the data the ridge estimator is called the operational 

ridge estimator. Hoerl and Kennard (1970 a, b), Hoerl, Kennard and Baldwin (1975) and Lawless 

and Wang (1976) suggested some of the operational ridge parameters. Following them, some of 

these estimates are defined as 
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4. The Monte Carlo Simulation Study 

 

     In this section, we will discuss the simulation study to compare the performances of the OLS, 

TS, ORR, TR, SLS, STS, Liu and TL estimators. MATLAB is used for the simulation 

experiment. Following McDonald and Galarneau (1975) and Kibria (2003), the explanatory 

variables are generated by 

 

pjnizzx piijij ,...,2,1,,...,2,1,)1( 1

2/12                         (46) 

 

where 
ijz  are independent standard normal pseudo-random numbers,   is specified so that the 

correlation between any two explanatory variables is given by 2 . Following Kibria (2003), 

three different sets of correlation are considered, corresponding to 9.0,8.0,7.0 . The 

explanatory variables are then standardized so that XX '  is in the correlation form. The 1ˆ V  

matrix is the estimated 
1V  matrix which is defined in (18). Using the second method of  ’s 

estimation in )1(AR , five values of Durbin-Watson statistic are taken as 8.1,4.1,0.1,6.0,2.0d . 

So, the estimated five different values of   are 9.0,7.0,5.0,3.0,1.0ˆ  . Following Şiray et al. 

(2014), we choose the   as the eigenvector corresponding to the largest and the smallest 

eigenvalue of the matrix XVX 1ˆ'  . Observations on the dependent variable are determined by 

 

nixxxy iippiii ,,2,1,22110                          (47) 

 

where i  are independent normal pseudo-random numbers with mean 0 and variance V̂2  and 

0  is taken to be identically zero. Six values of   are considered which are 0.1, 0.5, 1, 4, 9 and 

20. Then the dependent variable is standardized so that yX '  is the vector of correlations of the 

dependent variable with each explanatory variable. Where the biasing parameter k  in ORR and 

TR estimators and the biasing parameter d  in Liu and TL estimators are chosen as 0.001, 0.01, 

0.05, 0.1, 0.3, 0.5, 0.7, 0.9 and 1. Moreover, the biasing parameters k  and d  are taking as given 

in equations 47-53. Also, the constant a  in SLS and STS estimators is chosen as 3 pa  (see 
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Chaturvedi, et. al., 2001). In this study, we choose n =20 and 60 and p =4. Then the experiment 

is replicated 5,000 times by generating new error terms. 

 

     We use the SMSE criterion to investigate the performance of the OLS, TS, ORR, TR, SLS, 

STS, Liu and TL estimators. The estimated SMSE for any estimator *̂  is calculated as follows:  

 





MCN

r

rr
MCN

esm
1

)*ˆ(')*ˆ(
1

ˆ                                      (48) 

 

where  *ˆ
r  is the computed value of *̂  for the r

th
 replication of the experiment and MCN  is 

the number of replications, which is taken 5000 for this experiment. 

     The results of the simulation study are summarized in Tables 1–6. We have the following 

comments. Note that for each case we chose the best k  in ORR and TR estimators and the best 

d  in Liu and TL estimators among all suggested k ’s and d ’s which give the smallest SMSE. 

Firstly, we comment about  .  As   increases, the estimated SMSEs of the mentioned 

estimators also increase as expected (e.g. for 60,20,8.0,1.0ˆ  n , the SMSEs of the 

suggested estimators at 1  are larger than the SMSEs of the suggested estimators at 1.0 ). 

As   increases, the estimated SMSEs of the mentioned estimators also increase as expected (e.g. 

for 60,20,1.0ˆ  n , 1 , the SMSEs of the suggested estimators at 8.0  are larger than 

the SMSEs of the suggested estimators at 7.0 ). As n  increases, the estimated SMSEs of the 

mentioned estimators decrease as expected (e.g. for 7.0,1.0ˆ   , 1 , the SMSEs of the 

suggested estimators at 60n  are smaller than the SMSEs of the suggested estimators at 

20n ). Now, we investigate the effect of  , which designates the degree of multicollinearity. 

As multicollinearity becomes more serious, inflation in SMSE of the OLS and TS estimators is 

expected. An increase in  , is an increase in the estimated SMSE of the OLS and TS estimators, 

expectedly. For  =0.7,0.8,0.9, while ̂  is increasing, the estimated SMSEs of the OLS, ORR, 

Stein and Liu estimators are increasing and the estimated SMSEs of the TS, TR, STS and TL 

estimators are decreasing. Also, when   is increasing, the best model is the Liu estimator which 

its SMSE is decreasing rapidly rather than ORR estimator but when   and ̂  are increasing 

simultaneously, the best model is the TL estimator which its SMSE is decreasing rapidly rather 
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than the TR estimator. So, we can say that the STS estimator gives closed or better results than 

the TL estimator according to SMSE values for larger values of  . 

 

5. The Real Life Data Study 

 

     To illustrate the performance of the estimators, we consider the famous Portland cement data 

originally due to Woods et al. (1932). This data have been analyzed by several researchers: Hald 

(1952, pp. 635–652), Hamaker (1962), Gorman and Toman (1966, pp. 35–36), Daniel and Wood 

(1980, pp. 89–91, 106 107), Nomura (1988, pp. 735), Piepel and Redgate (1998) and Kaçıranlar 

et. al. (1999), Liu (2003), Sakallıoglu and Kaçıranlar (2008), and very recently, Muniz and 

Kibria (2009), among others. The data came from an experimental investigation of the heat 

evolved during the setting and hardening of Portland cement of varied composition and the 

dependence of this heat on the percentages of four compounds in the clinkers from which the 

cement was made. There are four explanatory variables: 1X : amount of tricalcium aluminate, 

2X : amount of ticalcium silicate, 3X : amount of tetracalcium alumino ferrite, and 4X : amount 

of dicalcium silicate. The response variable is Y : heat evolved in calories per gram of cement. 

 

Consider the following linear regression model: 

 

  443322110 XXXXY ,                              (49) 

 

where Y  represents the dependent variable and iX  for i= 1, 2, 3 and 4 are the independent 

variables. 

 

The fitted model is: 

 

4321 0.1441  - 0.10190.51021.551162.4054ˆ XXXXY  .            (50) 
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Table 7. Output using original data 

 

  n  p  2̂  dl  du  DW  
1VIF  2VIF  3VIF  4VIF  

0.05 13 4 5.983 0.574 2.094 2.053 38.496 254.423 46.868 282.513 

 

where iVIF  for each i= 1, 2, 3 represents the Variance Inflation Factors.  

 

Table 7 shows that duDWdl  , that means, the test is inconclusive. So, we took the residuals 

of the estimated model and we created the model of the residuals by its lags such that the best 

model of residuals is )1(AR  model with 081.0ˆ   or by using eq.(19). So, the model suffers 

from first order autoregressive scheme and since all 4VIFs , the model also suffers from 

multicollinearity.  

 

The XX '  (correlation form) is: 

 































1030.0973.0245.0

030.01139.0824.0

973.0139.01229.0

245.0824.0229.01

'XXr  

 

 

Table 8. Output using transformed data 

 

1VIF  2VIF  3VIF  4VIF  

11.322 102.586 12.575 116.204 

 

So, we solved the autocorrelated error using TS estimator, where the new 923.5ˆ 2   of a 

transformed data. Table 8 shows that all 4VIFs , that means, the model still suffers from the 

multicollinearity problem.  

The corresponding XVX 1ˆ'  (correlation form) is: 
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1012.0980.0269.0

012.01071.0788.0

980.0071.01245.0

269.0788.0245.01

1ˆ' XVX
r  

 

Since the model still suffers from the multicollinearity problem. We will use the TR estimator 

and the proposed TL estimator as the alternatives to solve this problem   

  

Table 9 summarizes the interesting comparisons for the estimators subject to this study. See 

Table 10 and 11 in Appendices for the complete comparisons.   

 

Table 9. Comparison of Estimators 

 

Estimator Var  2Bias  mse  k  or d  

OLŜ  4912.100 0.000000 4912.100000 ------- 

TŜ  4647.422 0.000000 4647.422000 ------- 

k̂  57.97370 3096.800 3154.774000 01.0k  

TR̂  59.44948 2321.100 2380.549000 01.0k  

Ŝ  4911.800 0.000004 4911.800004 -------- 

STŜ  4649.600 0.000002 4649.600002 -------- 

d̂  788.8650 1399.700 2188.565000 4.0d  

TL̂  746.4901 1059.600 1806.090000 4.0d  

 

Table 9 shows that TŜ  is better than OLŜ  because TŜ  gives smaller mse value than OLŜ  

which means, the correlation among errors is occurred. Also, the other biased estimators in 

general give better results in terms of the mse values than the OLŜ  and  TŜ  estimators which 

means, the data also suffers from multicollinearity problem as we mentioned above. Moreover, it 

shows clearly the good results of our improved estimator 
TL̂  which gives the smallest mse value 

among all the mentioned estimators especially when 4.0d . 
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According to the Tables 10 and 11 in Appendices, 
TL̂  is better than the other estimators in 

general and it is better than 
TR̂  when 6.0,5.0,4.0,3.0,2.0d  in terms of the mse criterion.  

 

Table 12. Comparisons between the ORR and the TR estimators with different estimated biasing 

parameter k  

 

Estimator 

The estimated 

biasing parameter 

k  

Var  2Bias  mse  

k̂  

0015.0ˆ HKk  961.4145 1211.70000 2173.11450000 

0077.0ˆ HKBk  92.18690 2902.80000 2994.98690000 

7104889.1ˆ LWk  4910.90 0.00005821 4910.90005821 

TR̂  

0020.0ˆ HKk  703.5970 1105.10000 1808.69700000 

01.0ˆ HKBk  59.37540 2329.20000 2388.57540000 

7107136.1ˆ LWk  4648.600 0.00005355 4648.60005355 

 

Table 12 shows that the mse values for the ORR and the TR estimator such that the mse values 

of the TR estimator are always smaller than the mse values of the ORR estimator for the three 

estimated biasing parameter k . (i.e. for 
HKk̂ , the mse value of the TR estimator is smaller than 

the mse value of the ORR estimator and etc.)   

 

Table 13. Comparisons between the Liu and the TL estimators with different estimated biasing 

parameter d  

Estimator 

The estimated 

biasing 

parameter d  

Var  2Bias  mse  

d̂  9939.0ˆ mmd  4852.100 0.14660 4852.2466 
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9724.0ˆ
)5.4( hmmd  4644.700 2.96870 4647.6687 

8702.0ˆ CLd  3721.400 65.4625 3786.8625 

4161.0ˆ
)45.0( hCLd  853.4019 1325.60 2179.0019 

TL̂  

9920.0ˆ mmd  4575.800 0.18920 4575.9892 

9640.0ˆ
)5.4( hmmd  4321.300 3.83120 4325.1312 

8303.0ˆ CLd  3207.300 85.0348 3292.3348 

2364.0ˆ
)5.4( hCLd  261.9467 1722.00 1983.000 

Table 13 shows that the mse values for the Liu and the TL estimator such that the mse values of 

the TL estimator are always smaller than the mse values of the Liu estimator for the four 

estimated biasing parameter d . (i.e. for CLd̂ , the mse value of the TL estimator is smaller than 

the mse value of the Liu estimator and etc.).   

Finally, according to the Tables 9, 12, and 13, we see that the TL estimator is the best estimator 

which gives the smallest mse value when 4.0d  comparing to the other mentioned estimators 

and then the TR estimator when 0020.0ˆ HKk  and so on.   

 

Conclusions: 

 

     In this paper, we have examined the multicollinearity and autocorrelation problem 

simultaneously and defined the TL estimator in the linear regression model with )1(AR  

correlated errors. Also, the results of our simulation and real life dataset suggest us that the mse 

of the TL estimator is smaller than the mentioned estimators but when   gets larger, the STS 

estimator gives closed or better results than the TL estimator according to mse values. 
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Appendices 

 

Table 1 

For 1.0  
  n   OLS TS ORR TR SLS STS LIU TL 

0.7 

20 

0.1 0.00400 0.00390 0.00390 0.00380 0.00400 0.00390 0.00390 0.00380 

0.3 0.00580 0.00380 0.00560 0.00380 0.00570 0.00380 0.00540 0.00370 

0.5 0.01230 0.00370 0.01200 0.00360 0.01230 0.00370 0.01090 0.00340 

0.7 0.04110 0.00330 0.04020 0.00320 0.04100 0.00330 0.03440 0.00290 

0.9 0.27280 0.00250 0.26660 0.00240 0.26860 0.00250 0.22090 0.00220 

60 

0.1 0.00130 0.00120 0.00130 0.00120 0.00130 0.00120 0.00130 0.00120 

0.3 0.00190 0.00120 0.00190 0.00120 0.00190 0.00120 0.00180 0.00110 

0.5 0.00390 0.00100 0.00390 0.0010 0.00390 0.00100 0.00370 0.00095 

0.7 0.01380 0.00074 0.01370 0.00073 0.01380 0.00073 0.01290 0.00072 

0.9 0.16540 0.00052 0.16420 0.00052 0.16170 0.00052 0.15430 0.00051 

0.8 

20 

0.1 0.00550 0.00530 0.00530 0.00510 0.00550 0.00530 0.00450 0.00430 

0.3 0.00770 0.00520 0.00750 0.00510 0.00770 0.00520 0.00630 0.00430 

0.5 0.01650 0.00520 0.01600 0.00500 0.01650 0.00520 0.01310 0.00410 

0.7 0.05600 0.00470 0.05430 0.00450 0.05590 0.00470 0.04280 0.00360 

0.9 0.38170 0.00360 0.36940 0.00350 0.37670 0.00360 0.28400 0.00290 

60 

0.1 0.00180 0.00170 0.00180 0.00170 0.00180 0.00170 0.00170 0.00160 

0.3 0.00260 0.00160 0.00260 0.00160 0.00260 0.00160 0.00240 0.00150 

0.5 0.00540 0.00130 0.00530 0.00130 0.00540 0.00130 0.00490 0.00120 

0.7 0.01890 0.00100 0.01870 0.00100 0.01890 0.00100 0.01710 0.00095 

0.9 0.22680 0.00072 0.22440 0.00071 0.22200 0.00070 0.20470 0.00067 

0.9 

20 

0.1 0.01000 0.00980 0.00930 0.00930 0.01000 0.00980 0.00600 0.00580 

0.3 0.01400 0.00970 0.01310 0.00920 0.01400 0.00970 0.00860 0.00580 

0.5 0.02980 0.00960 0.02800 0.00910 0.02980 0.00960 0.01830 0.00570 

0.7 0.10260 0.00910 0.09650 0.00850 0.10240 0.00910 0.06190 0.00520 

0.9 0.71580 0.00720 0.67290 0.00680 0.70810 0.00720 0.42210 0.00430 

60 

0.1 0.00330 0.00310 0.00320 0.00310 0.00330 0.00310 0.00280 0.00260 

0.3 0.00480 0.00300 0.00470 0.00290 0.00480 0.00300 0.00400 0.00250 

0.5 0.01000 0.00250 0.00980 0.00240 0.01000 0.00250 0.00830 0.00210 

0.7 0.03500 0.00190 0.03430 0.00180 0.03500 0.00190 0.02890 0.00160 

0.9 0.42220 0.00130 0.41350 0.00130 0.41440 0.00130 0.34690 0.00120 
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Table 2 

For 5.0  
  n   OLS TS ORR TR SLS STS LIU TL 

0.7 

20 

0.1 0.10080 0.09690 0.09830 0.09450 0.10000 0.09620 0.08060 0.07770 

0.3 0.14380 0.09600 0.14030 0.09370 0.14220 0.09520 0.11590 0.07700 

0.5 0.30720 0.09310 0.30010 0.09080 0.30100 0.09230 0.24840 0.07400 

0.7 1.02760 0.08140 1.00410 0.07940 0.97840 0.08050 0.83050 0.06480 

0.9 6.82120 0.06200 6.66410 0.06060 6.20290 0.06080 5.49090 0.05040 

60 

0.1 0.03260 0.03100 0.03230 0.03080 0.03250 0.03090 0.03040 0.02890 

0.3 0.04700 0.02920 0.04670 0.02900 0.04680 0.02910 0.04380 0.02720 

0.5 0.09780 0.02450 0.09700 0.02430 0.09690 0.02440 0.09110 0.02290 

0.7 0.34450 0.01860 0.34200 0.01850 0.33390 0.01850 0.32070 0.01750 

0.9 4.13540 0.01310 4.10560 0.01300 3.15710 0.01300 3.85520 0.01240 

0.8 

20 

0.1 0.13640 0.13150 0.13160 0.12690 0.13550 0.13060 0.09930 0.09590 

0.3 0.19300 0.13120 0.18650 0.12660 0.19130 0.13020 0.14250 0.09580 

0.5 0.41250 0.13040 0.39910 0.12560 0.40550 0.12920 0.30690 0.09370 

0.7 1.40120 0.11730 1.35620 0.11300 1.34180 0.11600 1.04390 0.08420 

0.9 9.54210 0.09080 9.23310 0.08780 8.72030 0.08920 7.06980 0.06710 

60 

0.1 0.04480 0.04260 0.04430 0.04210 0.04460 0.04250 0.04050 0.03850 

0.3 0.06470 0.04010 0.06400 0.03970 0.06440 0.04000 0.05840 0.03630 

0.5 0.13460 0.03370 0.13320 0.03330 0.13360 0.03360 0.12160 0.03060 

0.7 0.47360 0.02550 0.46850 0.02530 0.46060 0.02540 0.42720 0.02350 

0.9 5.67070 0.01790 5.61040 0.01780 4.35760 0.01780 5.11600 0.01670 

0.9 

20 

0.1 0.24910 0.24590 0.23260 0.22860 0.24770 0.24390 0.14100 0.13600 

0.3 0.34920 0.24140 0.32710 0.22550 0.34650 0.23970 0.20260 0.13600 

0.5 0.74490 0.24060 0.69940 0.22480 0.73400 0.23910 0.43910 0.13520 

0.7 2.56580 0.22850 2.41240 0.21220 2.47080 0.22620 1.52110 0.12460 

0.9 17.8960 0.18060 16.8203 0.16880 16.44270 0.17760 10.5212 0.10280 

60 

0.1 0.08270 0.07870 0.08110 0.07710 0.08260 0.07850 0.06830 0.06490 

0.3 0.11960 0.07410 0.11720 0.07260 0.11920 0.07390 0.09880 0.06130 

0.5 0.24890 0.06210 0.24390 0.06090 0.24730 0.06190 0.20550 0.05200 

0.7 0.87490 0.04690 0.85710 0.04610 0.85400 0.04680 0.72050 0.04010 

0.9 10.5552 0.03300 10.3373 0.03250 8.23070 0.03280 8.67260 0.02890 
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Table 3 

For 1  
  n   OLS TS ORR TR SLS STS LIU TL 

0.7 

20 

0.1 0.40310 0.38780 0.39300 0.37820 0.39110 0.37620 0.32020 0.30850 

0.3 0.57500 0.38410 0.56130 0.37470 0.55250 0.37220 0.46120 0.30600 

0.5 1.22890 0.37260 1.20050 0.36310 1.15100 0.35940 0.99070 0.29440 

0.7 4.11050 0.32580 4.01650 0.31760 3.70320 0.31120 3.31830 0.25820 

0.9 27.2847 0.24780 26.6562 0.24220 24.2084 0.23070 21.9590 0.20090 

60 

0.1 0.13030 0.12390 0.12940 0.12300 0.12870 0.12250 0.12140 0.11530 

0.3 0.18810 0.11680 0.18670 0.11590 0.18490 0.11540 0.17520 0.10870 

0.5 0.39110 0.09800 0.38820 0.09740 0.37810 0.09680 0.36410 0.09170 

0.7 1.37810 0.07430 1.36790 0.07380 1.23580 0.07320 1.28240 0.07000 

0.9 16.5416 0.05230 16.4223 0.05200 11.7350 0.05110 15.4206 0.04970 

0.8 

20 

0.1 0.54570 0.52600 0.52630 0.50750 0.53110 0.51180 0.39550 0.38210 

0.3 0.77220 0.52470 0.74610 0.50640 0.74550 0.50970 0.56820 0.38170 

0.5 1.65020 0.52140 1.59640 0.50230 1.55590 0.50420 1.22510 0.37380 

0.7 5.60480 0.46930 5.42490 0.45200 5.07920 0.44930 4.17220 0.33610 

0.9 38.1682 0.36330 36.9321 0.35120 33.9684 0.33890 28.2746 0.26780 

60 

0.1 0.17910 0.17030 0.17720 0.16850 0.17710 0.16860 0.16170 0.15370 

0.3 0.25870 0.16050 0.25600 0.15890 0.25490 0.15890 0.23370 0.14510 

0.5 0.53840 0.13470 0.53270 0.13340 0.52260 0.13320 0.48620 0.12250 

0.7 1.89430 0.10200 1.87410 0.10110 1.71750 0.10070 1.70880 0.09380 

0.9 22.6829 0.07180 22.4416 0.07120 15.9184 0.07020 20.4639 0.06680 

0.9 

20 

0.1 0.99660 0.98340 0.93020 0.91460 0.97330 0.95370 0.56280 0.54610 

0.3 1.39670 0.96540 1.30830 0.90200 1.35480 0.94040 0.80890 0.54470 

0.5 2.97940 0.96230 2.79760 0.89900 2.82820 0.93940 1.75390 0.54000 

0.7 10.2633 0.91410 9.64970 0.84890 9.35990 0.87800 6.08090 0.49760 

0.9 71.5838 0.72250 67.2808 0.67510 63.8998 0.67640 42.0796 0.41080 

60 

0.1 0.33100 0.31480 0.32430 0.30840 0.32790 0.31200 0.27320 0.25950 

0.3 0.47830 0.29640 0.46860 0.29050 0.47220 0.29370 0.39500 0.24520 

0.5 0.99570 0.24820 0.97560 0.24360 0.97040 0.24590 0.82190 0.20800 

0.7 3.49970 0.18760 3.42830 0.18450 3.20820 0.18540 2.88210 0.16040 

0.9 42.2209 0.13180 41.3493 0.13000 29.5067 0.12920 34.6903 0.11540 
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Table 4 

For 4  
  n   OLS TS ORR TR SLS STS LIU TL 

0.7 

20 

0.1 6.44980 6.20420 6.28790 6.05030 5.07820 4.86230 5.11030 4.92450 

0.3 9.20050 6.14540 8.98090 5.99500 7.36510 4.77360 7.36780 4.88810 

0.5 19.6632 5.96110 19.2077 5.80970 16.0776 4.45090 15.8372 4.70450 

0.7 65.7674 5.21270 64.2639 5.08190 55.5152 3.51680 53.0740 4.12640 

0.9 436.555 3.96500 426.498 3.87570 382.422 2.17510 351.316 3.21080 

60 

0.1 2.08500 1.98280 2.06970 1.96810 1.78630 1.70550 1.94080 1.84440 

0.3 3.00990 1.86850 2.98770 1.85480 2.50190 1.60480 2.80180 1.73950 

0.5 6.25700 1.56860 6.21090 1.55770 4.88030 1.32880 5.82370 1.46650 

0.7 22.0498 1.18850 21.8867 1.18120 16.0425 0.96750 20.5168 1.11950 

0.9 264.665 0.83710 262.757 0.83280 181.628 0.61470 246.727 0.79570 

0.8 

20 

0.1 8.73120 8.41550 8.42020 8.11950 6.31950 6.10450 6.93530 6.65150 

0.3 12.3546 8.39530 11.9375 8.10270 9.08270 6.10050 9.93780 6.58410 

0.5 26.4031 8.34310 25.5421 8.03710 19.5893 5.97500 21.7634 6.28810 

0.7 89.6762 7.50850 86.7975 7.23230 75.9630 5.12120 66.7379 5.37400 

0.9 610.691 5.81240 590.911 5.61840 536.198 3.17970 452.363 4.28200 

60 

0.1 2.86490 2.72500 2.83470 2.69600 2.48270 2.36980 2.58670 2.45830 

0.3 4.13940 2.56860 4.09580 2.54180 3.47990 2.23060 3.73800 2.32120 

0.5 8.61410 2.15530 8.52330 2.13420 6.79570 1.85200 7.77750 1.96030 

0.7 30.3085 1.63180 29.9858 1.61760 22.0855 1.34970 27.3386 1.50020 

0.9 362.926 1.14830 359.064 1.13990 244.336 0.83460 327.421 1.06930 

0.9 

20 

0.1 15.9454 15.7347 14.8830 14.6333 8.99870 8.73250 12.8012 12.3038 

0.3 22.3479 15.4469 20.9331 14.4320 12.9362 8.70930 18.0908 12.2405 

0.5 47.6711 15.3974 44.7620 14.3837 28.0504 8.63590 39.3592 12.0052 

0.7 164.213 14.6261 154.393 13.5825 97.2736 7.95820 139.464 10.1408 

0.9 1145.30 11.6000 1076.50 10.8000 673.200 6.30000 1007.40 6.60000 

60 

0.1 5.29570 5.03690 5.18890 4.93460 4.37030 4.15080 4.65920 4.44610 

0.3 7.65220 4.74180 7.49830 4.64740 6.31850 3.92320 6.54520 4.18740 

0.5 15.9306 3.97130 15.6098 3.89780 13.1498 3.32810 12.6967 3.46200 

0.7 55.9950 3.00100 54.8532 2.95190 40.9063 2.52570 46.1132 2.56620 

0.9 675.533 2.10890 661.588 2.07980 446.404 1.54280 555.045 1.84640 
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Table 5 

For 9  

 
  n   OLS TS ORR TR SLS STS LIU TL 

0.7 

20 

0.1 32.6519 31.4087 31.8320 30.6295 23.6928 22.6089 25.8664 24.9259 

0.3 46.5776 31.1112 45.4661 30.3497 35.2403 21.9844 37.2981 24.7447 

0.5 99.5449 30.1780 97.2390 29.4116 79.4956 20.0158 80.1728 23.8155 

0.7 332.947 26.3891 325.335 25.7274 279.238 15.1105 268.681 20.8890 

0.9 2210.10 20.1000 2159.10 19.6000 1934.10 11.3000 1778.50 16.3000 

60 

0.1 10.5553 10.0381 10.4777 9.96350 7.62080 7.23800 9.82540 9.33740 

0.3 15.2374 9.45920 15.1254 9.38980 10.9537 6.66130 14.1837 8.80600 

0.5 31.6760 7.94080 31.4428 7.88600 22.4672 5.27050 29.4819 7.42420 

0.7 111.627 6.01690 110.801 5.98010 78.6438 3.53340 103.865 5.66770 

0.9 1339.90 4.20000 1330.20 4.20000 918.300 3.90000 1249.10 4.00000 

0.8 

20 

0.1 44.2016 42.6034 42.6273 41.1049 32.1547 30.7202 31.9894 30.9010 

0.3 62.5453 42.5013 60.4340 41.0199 47.5176 30.2846 45.9803 30.8828 

0.5 133.665 42.2367 129.306 40.6881 107.076 28.2925 99.1680 30.2476 

0.7 453.986 38.0119 439.411 36.6134 382.370 22.1694 337.854 27.2052 

0.9 3091.60 29.4000 2991.50 28.4000 2711.90 15.6000 2290.10 21.7000 

60 

0.1 14.5036 13.7951 14.3506 13.6484 10.5212 9.97150 13.0951 12.4447 

0.3 20.9558 13.0038 20.7351 12.8678 15.0803 9.18420 18.9235 11.7507 

0.5 43.6090 10.9113 43.1492 10.8046 31.1998 7.31510 39.3732 9.92420 

0.7 153.436 8.2608 151.803 8.18930 108.307 4.77770 138.401 7.59460 

0.9 1837.30 5.80000 1817.80 5.80000 1234.60 0.00430 1657.60 0.00540 

0.9 

20 

0.1 80.7234 79.6567 75.3449 74.0813 45.5531 44.2079 58.9509 56.3124 

0.3 113.136 78.1999 105.974 73.0620 65.4888 44.0888 86.3287 56.0249 

0.5 241.335 77.9496 226.607 72.8176 142.001 43.7186 193.687 53.8833 

0.7 831.330 74.0447 781.614 68.7613 492.439 40.2881 701.149 43.3820 

0.9 5798.30 58.5000 5449.70 54.7000 5095.00 29.4000 3408.20 33.3000 

60 

0.1 26.8097 25.4994 26.269 24.9812 19.6643 18.6580 22.1245 21.0134 

0.3 38.7390 24.0052 37.9601 23.5276 28.2216 17.3363 31.9868 19.8613 

0.5 80.6489 20.1048 79.0248 19.7324 57.4337 13.5320 66.5715 16.8483 

0.7 283.474 15.1926 277.694 14.9442 198.408 8.69680 233.448 12.9914 

0.9 3419.90 10.7000 3349.30 10.5000 2252.30 5.50000 2809.90 9.30000 
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Table 6 

For 20  
  n   OLS TS ORR TR SLS STS LIU TL 

0.7 

20 

0.1 161.243 155.104 157.194 151.256 114.990 109.370 127.728 123.085 

0.3 230.012 153.635 224.524 149.875 171.387 105.738 184.189 122.196 

0.5 491.580 149.026 480.192 145.242 390.223 95.2341 395.914 117.607 

0.7 1644.20 130.300 1606.60 127.000 1377.10 70.4000 1326.80 103.200 

0.9 109140 99.0000 10662.0 97.0000 9549.00 60.0000 8783.00 80.0000 

60 

0.1 52.1250 49.5707 51.7417 49.2026 34.9243 32.7802 48.5204 46.1108 

0.3 75.2466 46.7122 74.6933 46.3692 51.2379 29.6174 70.0422 43.4865 

0.5 156.424 39.2138 155.272 38.9433 107.975 22.3779 145.588 36.6631 

0.7 551.244 29.7132 547.167 29.5313 385.467 15.5825 512.915 27.9886 

0.9 6616.60 20.9000 6568.90 20.8000 4535.40 11.6000 6168.20 19.9000 

0.8 

20 

0.1 218.279 210.387 210.505 202.987 156.396 148.725 157.967 152.593 

0.3 308.865 209.883 298.439 202.567 231.055 144.947 227.064 152.507 

0.5 660.078 208.576 638.552 200.928 525.454 134.669 489.716 149.371 

0.7 2241.90 187.700 2169.90 180.800 1883.70 103.500 1668.40 134.300 

0.9 152670 145.000 14773.0 140.000 13389.0 87.0000 11309.0 107.000 

60 

0.1 71.6226 68.1240 70.8673 67.3994 48.0458 45.2322 64.6670 61.4549 

0.3 103.485 64.2161 102.395 63.5444 71.0831 40.9048 93.4495 58.0275 

0.5 215.353 53.8831 213.082 53.3562 149.000 30.9069 194.434 49.0085 

0.7 757.713 40.7939 749.645 40.4409 528.454 21.2984 683.460 37.5045 

0.9 9073.20 28.7000 8976.60 28.5000 6097.90 17.5000 8185.50 26.7000 

0.9 

20 

0.1 398.634 393.400 372.073 365.800 224.949 218.311 286.237 271.932 

0.3 558.697 386.172 523.328 360.800 323.402 217.719 418.647 267.845 

0.5 1191.80 384.936 1119.00 359.592 701.200 215.900 950.700 257.000 

0.7 4105.30 365.700 3859.80 339.600 2431.80 199.000 3456.70 206.300 

0.9 286340 289.000 26912.0 270.000 16831.0 164.000 25154.0 172.000 

60 

0.1 132.393 125.922 129.723 123.364 89.0723 83.9173 109.256 103.769 

0.3 191.303 118.544 187.457 116.185 130.846 75.7438 157.958 98.0806 

0.5 398.266 99.2828 390.246 97.4439 276.051 57.2628 328.749 83.2014 

0.7 1399.90 75.0000 1371.30 73.8000 975.000 39.5000 1152.80 64.2000 

0.9 168880 53.0000 16540.0 52.0000 11117.0 113.000 13876.0 46.0000 
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Table 10 

 

 
k̂  

TR̂  

k  Var  2Bias  mse  Var  2Bias  mse  

0 4912.100 0.000000 4912.100 4647.422 0.000000 4647.422 

0.01 57.97370 3096.800 3154.774 59.44948 2321.100 2380.549 

0.02 16.25220 3462.500 3478.752 16.74240 2607.500 2624.242 

0.03 7.542900 3599.000 3606.543 7.781771 2714.900 2722.682 

0.04 4.354700 3670.200 3674.555 4.495065 2771.100 2775.595 

0.05 2.843200 3714.000 3716.843 2.935167 2805.600 2808.535 

0.06 2.009700 3743.600 3745.610 2.074485 2829.000 2831.074 

0.07 1.502000 3765.000 3766.502 1.549900 2845.900 2847.450 

0.08 1.170000 3781.100 3782.270 1.206676 2858.600 2859.807 

0.09 0.941000 3793.700 3794.641 0.969974 2868.600 2869.570 

0.1 0.776500 3803.900 3804.677 0.799897 2876.700 2877.500 

0.2 0.245000 3850.100 3850.345 0.250166 2913.200 2913.450 

0.3 0.145300 3865.700 3865.845 0.146813 2925.600 2925.747 

0.4 0.110100 3873.600 3873.710 0.110481 2931.800 2931.910 

0.5 0.093700 3878.300 3878.394 0.093552 2935.500 2935.594 

0.6 0.084800 3881.500 3881.585 0.084247 2938.000 2938.084 

0.7 0.079300 3883.800 3883.879 0.078604 2939.900 2939.979 

0.8 0.075800 3885.500 3885.576 0.074941 2941.200 2941.275 

0.9 0.073300 3886.900 3886.973 0.072367 2942.300 2942.372 

1 0.071500 3888.000 3888.072 0.070486 2943.200 2943.270 
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Table 11 

 

 
d̂  

TL̂  

d  Var  2Bias  mse  Var  2Bias  mse  

0 0.07150 3888.00 3888.072 0.070486 2943.200 2943.270 

0.01 0.68090 3810.60 3811.281 0.652193 2884.600 2885.252 

0.02 2.27030 3734.00 3736.270 2.161108 2826.700 2828.861 

0.03 4.83970 3658.20 3663.040 4.597032 2769.300 2773.897 

0.04 8.38920 3583.20 3591.589 7.960065 2712.500 2720.460 

0.05 12.9187 3508.90 3521.819 12.25030 2656.200 2668.450 

0.06 18.4282 3435.40 3453.828 17.46755 2600.600 2618.068 

0.07 24.9177 3362.70 3387.618 23.61201 2545.600 2569.212 

0.08 32.3873 3290.80 3323.187 30.68358 2491.100 2521.784 

0.09 40.8368 3219.70 3260.537 38.68225 2437.300 2475.982 

0.1 50.2664 3149.30 3199.566 47.60803 2384.000 2431.608 

0.2 198.463 2488.30 2686.763 187.8570 1883.600 2071.457 

0.3 444.663 1905.10 2349.763 420.8171 1442.200 1863.017 

0.4 788.865 1399.70 2188.565 746.4901 1059.600 1806.090 

0.5 1231.10 972.000 2203.100 1164.900 735.8000 1900.700 

0.6 1771.30 622.080 2393.380 1675.923 470.9120 2146.835 

0.7 2409.50 349.920 2759.420 2279.806 264.8880 2544.694 

0.8 3145.70 155.520 3301.220 2976.251 117.7280 3093.979 

0.9 3979.90 38.8800 4018.780 3765.555 29.43200 3794.987 

1 4912.10 0.00000 4912.100 4647.422 0.000000 4647.422 

 

 

 


