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ABSTRACT 

Quicksort was and is still one of the most practical sorting techniques.  Unfortunately, it suffers from a 

worst case asymptotic running time of 𝑂 𝑛2  on a list of n items.   However, its worst case running 

time can be improved to 𝜃 𝑛 𝑙𝑜𝑔 𝑛  by using the median of medians technique for pivot finding but at 

the expense of relative deterioration in average case performance.  We compare the running time 

improvement on classical quicksort when the median of medians is only called when there is mounting 

evidence that it could help improve the run time performance of the pivot finding method used.  We 

study and present evidence that such a technique can be quite practical and yet have optimal worst 

case running time. 

 

Keywords: Quicksort, pivot, partitioning, average case performance, median. 

 

1.    Introduction. 

The main task of computers is to store, manipulate and retrieve data.  The manipulation of data may 

require the rearrangement of data to facilitate future manipulations and retrieval operations.  This 

made searching and sorting fundamental problems in computing, and indeed all applications require 

some form of rearrangement and retrieval of data.  The problem of sorting in particular is to rearrange 

the data in a particular order, usually ascending or descending.   A clear example of the importance of 

sorting is the telephone directory.  Imagine that you want to find the number of a particular person, but 

the names in the directory are random and compare the search time to that of a directory with 

lexicographically ordered entries. 
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Sorting as a problem existed long before the first computer was built.  Indeed, it is well known that 

Radix or Hollerith sort was used in the 1890 USA census and dates back to 1887.  Other techniques 

that date back to the mid of the twentieth century include techniques such as Bubble sort.   

 

Sorting techniques are divided into two main categories: Comparison based and non comparison 

based.  For example the aforementioned Radix sort falls into the non-comparison based sorting 

techniques, which Bubble sort is a comparison based sorting technique.   Comparison based sorting 

techniques can also be divided into ones that sort incrementally or those that use Divide and Conquer.  

For example, Bubble, Insertion, and Selection Sort fall into the incremental sort techniques, while 

others such as Heap sort [1], Merge sort [2], and Quick sort [3] use divide and conquer.   Incremental 

techniques suffer from the fact that they are quite inefficient, though variants such as Shell sort [4], 

and Enhanced Selection sort [5] attain good asymptotic performance, but they are no match for the 

more efficient sort techniques that use divide and conquer such as Heap sort or Quick sort.  

 

Sorting as a problem is known to require Ω 𝑛 log 𝑛  comparisons in comparison based sorting.  Heap 

sort and Merge sort attain this asymptotic bound and therefore, optimal sorting techniques up to a 

constant factor.  Quick sort on the other hand has a worst case asymptotic performance of 𝑂 𝑛2 .   

however, the average case performance of quick sort is 𝑂 𝑛 log 𝑛 .  Nowadays there are hundreds of 

sorting techniques, but quick sort is still considered the most practical sorting technique. 

 

The sorting idea of quick sort is quite simple, and it is based on a partitioning scheme that would 

accept a list of items and splits it into two lists based on a pivot.  All the items in one list contain data 

items with keys not more than the pivot, and all the items in the other list contain keys with value 

greater than the pivot.   This way we can arrange the items so that all data items with key values not 

more than the pivot appear before all data items with key values more than the pivot.  By recursing on 

both lists we eventually obtain a sorted list.   The pivot in this sorting technique plays an important 

role in determining the efficiency of the technique.  For example, if we always choose the least or 

highest key valued element as the pivot, we end up with an inefficient sorting process whose 

asymptotic running time is 𝑂(𝑛2).   However, if we always use the median of the given list as the 

pivot for the partitioning step, we end up with two lists of more or less the same size.  In this case the 

running time of the sorting process is 𝑂 𝑛 log 𝑛 , which matches the optimal asymptotic bound for 

comparison based sorting. 
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In practice it is unlikely to always have the smallest or greatest element as the pivot for the partitioning 

process.  Indeed, even if we meet such a case at some point in the sorting process, it is more likely to 

get a more even pivot in the next round.   However, despite its superior average performance, it still 

lacks the theoretical “prestige” of having 𝜃 𝑛 log 𝑛  worst case asymptotic bound.   One can employ 

available techniques for finding the median of a list in order to find a suitable pivot which can then be 

used to partition the lists during the sorting process.  However, this increases the constant factor in the 

average running time of the algorithms which makes it less efficient and not as practical as some of 

the other available sorting techniques, and certainly less practical than the classical quick sort.  

 

[6] Presents a technique to deal with the problem of making the worst case running time of quick sort 

be 𝜃 𝑛 log 𝑛  while at the same time leaving the average case running time mostly unaffected by the 

modifications made.    The technique is not to employ the median finding algorithm every time we 

need to find the pivot, rather, only call a median finding routine under restricted conditions that 

guarantee a worst case running time of  𝜃 𝑛 log 𝑛 , and yet improve the average running time or at 

least don’t substantially affect it.   The restriction on the use of the median of medians is through the 

use of a threshold level which records the number of consecutive recursive calls in quicksort result in 

unevenly partitioned lists.   The degree of unevenness was not defined in [6], but in this paper we use 

10 as evenness factor, or in other words if one of the partitioned lists is at least 10 times the size of the 

smaller list we regards the partitioning as uneven. 

 

In this paper we perform empirical tests to study the effect of the modifications suggested by [6] on 

the practicality of the quick sort.  We study the modified quick sort under various degrees of thinning 

the original list to extract an “acceptable” pivot as well as the value of the threshold after which we 

resort to the median function to find a pivot.   

 

In section 2 we present the thinning technique used in our study, and in section 3 we present the quick 

sort technique given by [6], which we would refer to in this paper as the Enhanced Quicksort.   

Section 4 presents the results of comparison between the running times of classical versus the 

enhanced quick sort when we use exactly the same data for both techniques. 
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2. The Thinning algorithm. 

 

[7] Produced the first O(n) time algorithms to find the median or the kth item in a list of n items 

without resorting to sorting the list.  The steps can be summarized as: 

 

1. Partition the list of 𝑛 elements into 𝑛/5 groups of 5 elements each.  

2. Find the median of each group.  In our implementation the median of the group is found 

using insertion sort. 

3. Find the median of medians by recursion on the group medians.  

4. If found median of medians is indeed the median of the whole list we can stop with 

answer  

5. Otherwise partition the original list on this median and the larger partition would contain 

the median of the whole list and all we need to do is to find the item in that list whose 

rank would make it the median of the original list.  

 

According to [6] the median shouldn’t be called on the whole list, but a small fraction of the given list.  

The fraction of items chosen from the list is taken by inspecting every dth element, for some constant 

d ≥ 2.  The function for thinning the list is as follows: 

 

function ThinList(a[], l, r, d, j) 
   i = l; 
   while (i+jd  ≤  r){ 
    m1 = i;  
 t = i + jd; 
 for(s= i+j; s<t; s+=j) if (a[s] < a[m1]) m1 = s;  //takes O(n/j) time 
 swap(i, m1);       //every item greater than 
d items 
 i+=jd; 
 } 
   i = l; 
   while (𝑖 + 𝑗𝑑2  ≤  r){ 

m1 = i; 
 t = 𝑖 + 𝑗𝑑2; 
 for(s= i+jd; s<t; s+= jd) if (a[s] > a[m1]) m1 = s;   //takes O(n/jd) time 
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 swap(i, m1);       //every item less than d 
items 
 𝑖+= 𝑑2; 
 } 
   𝑖 = 𝑗𝑑2; 
   return mom(a[l]; a[l+i]; a[l+2i]; . . . ; a[t])   // t = l + (r-l)/  
  
}        // takes O(n/d2) time. 
 

The ThinList function scans the list during the first while loop and inspects every dth element in the 

list.  It finds the minimum of these items for every d inspected items and swaps that minimum with the 

ith item in the list.   Thus By the end of this step we know that the first item in every group of 

 𝑑2 elements in the original list is at least less than or equal to d elements in that group.    The ThinList 

function inspects the lists again in the second while loop, but then every 𝑑2th element in groups of 𝑑3 

elements in the original list.  However, this time it finds the maximum of these and swaps it with the 

first element in the group.  This time we are guaranteed that the maximum of each group of 𝑑3items 

has at least d elements in a group of value greater than or equal, and similarly d items of value less 

than or equal. 

These 𝑛/𝑑3 elements are moved to the beginning of the list (this step was performed during the while 

loops to save time) and the median of medians algorithm is applied only to this portion of size 𝑛/𝑑3 

of the list. 

 

2. The QuickSort algorithm. 

We don’t put any restriction on the use of a particular quicksort algorithm in this paper.   As a matter 

of fact any quicksort implementation that uses a constant number of values to determine the pivot will 

do, even ones that use dual or multiple pivots.  We shall refer to such an implementation as Classical 

Quicksort.    According to [6] the enhanced quickSort algorithm to be used is exactly the classical 

quicksort, but with a minor modification.   The modification is through the use of the integer variable 

lvl and the integer constant: threshold.   Quicksort uses the normal pivot evaluation prior to the 

partitioning step.   A check is made prior to recursive call for quicksort on the partitioned lists to see if 

one of the partitioned lists is greater in size than the other by a factor of say 10 or more then the value 
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of the variable lvl is increased by 1.    The increase of 1 to the lvl variable is only applied in the call to 

the larger of the two partitions.  When the value of lvl reaches a level determined by the threshold 

constant we set the lvl variable again to 0 and call the ThinList function explained earlier to find the 

pivot instead of the normal pivot finding step.   This way the median of medians is called on a small 

fraction of the list and only when the normal pivot finding technique keeps giving us pivots that 

produce highly uneven lists for a number of consecutive recursive calls.     

 if (lvl ≥ threshold){ 
lvl=0;  
pivotIndex =ThinList(input, low, high, d, lvl);  
pivot=input[pivotIndex];} 

     else pivot = normal pivot finding technique;  
 Perform normal partitioning step 
 Let sizeLeft be size of the list with elements ≤ the pivot;  

Let sizeRight be size of the other list with elements > the pivot;  
   

 if (sizeLeft > 10* sizeRight){lvl++;  
  quicksort (input, low, newHigh, d, lvl, threshold); 
  quicksort (input, newLow, high, d, 0, threshold); 
           } 

elseif (sizeRight > 10* sizeLeft){lvl++;  
  quicksort (input, low, newHigh, d, 0, threshold); 
  quicksort (input, newLow, high, d, lvl, threshold); 
           } 

else { 
  quicksort (input, low, newHigh, d, 0, threshold); 
  quicksort (input, newLow, high, d, 0, threshold); 
           } 
3. Empirical comparison  

3.1. Tests made 

The tests made for comparison between the enhanced quicksort and classical quicksort using Java.   

The comparisons were made on the same data as input to each routine using: first item, median of 

three, and a random item, as the pivot in the classical quicksort and in the enhanced quicksort.   Each 
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routine was run for 100 times in each case and the average of the run times was obtained.  The length 

of data was taken from 100 to 10000 when the first element or a random element was used as the 

pivot, and from 100 to 100000 when the pivot was the median of three.  The timing was recorded 

using Java System.nanoTime() to record the time in nanoseconds, and the random number generator 

in Java rand.nextInt() was used for generating random numbers as data.    As mentioned earlier the 

code for the classical and the enhanced quicksort algorithms was exactly the same except mainly the 

line where the pivot is to be determined.   Moreover, all tests were performed on the same computer 

system.    

We understand that as is the case in all empirical tests many factors play a role in determining the 

running time of an algorithm.  For example, the hardware system being used, the operating system, the 

compiler and programming language used and its efficiency in handling recursive and non recursive 

calls, are factors among other factors that affect the running time of an algorithm.   However, it should 

be evident from the above that we tried to minimize the effect of factors that affect the comparison 

between the algorithms.  The random number generation allows us to compare algorithms on random 

data; however, most real data are not entirely random.  Indeed, data in databases can actually be 

mostly sorted.  To deal with this case we also investigated the performance of the algorithms when the 

data are sorted, reverse sorted.   

The time the enhanced quicksort algorithm would take on already sorted data is of particular 

importance.  This is due to the fact that its worst case running time is supposed to be 𝜃 𝑛 log 𝑛 , but 

with a slightly greater constant factor. 

In comparing the times taken by the algorithms we were interested in the ratio of the running time of 

the enhanced quicksort to that of the classical quicksort.  Such a ratio can indicate whether the 

enhanced quicksort is an improvement over the classical quicksort with random and ordered data or 

not.  For example, a ratio of 1 means both the enhanced and classical algorithms took the same 

amount of time to perform the sort.  A ratio value less than 1 implies that the enhanced algorithm 

sorted the same data in less time than the classical quicksort.   Similarly, a ratio value of more than 1 

indicates that the classical quicksort outperformed the enhanced quicksort.    

The tests were performed with various values of d and lvl.  The range of values of d was from 2 to 11, 

and for lvl the range was from 0 to 4.   It is worth reiterating that the value of lvl indicates the levels or 

the number of recursive calls we wait for before reverting to the ThinList function.   For example, 
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when lvl is 0 we call the median of medians on the larger list whenever one of the lists is at least 10 

times more than the other.  On the other hand if the value of lvl is 1 then we don’t call the ThinList 

function unless this is the second consecutive recursive call with the larger of the lists at least 10 times 

of the other.  The value of d on the other hand gives the thinning factor for the list, since we only look 

at 
𝑛

𝑑3 elements of the list for the median of medians. 

3.2. Results  

3.2.1. Performance Ratio Results  

 

 

3.2.1.1.  The pivot is the first item in the list 

  Pivot: First Item   Data: In increasing order     

  d=2 d=3 d=4 d=5 d=6 d=7 d=8 d=9 d=10 d=11 

t = 0 0.1 0.07 0.06 0.05 0.06 0.06 0.07 0.08 0.09 0.09 

t = 1 0.04 0.03 0.03 0.03 0.04 0.04 0.05 0.06 0.08 0.08 

t = 2 0.04 0.03 0.03 0.03 0.04 0.04 0.05 0.06 0.07 0.07 

t = 3 0.04 0.03 0.03 0.04 0.04 0.05 0.06 0.07 0.07 0.09 

t = 4 0.04 0.03 0.03 0.05 0.04 0.06 0.06 0.07 0.08 0.09 

Table 1:  Average ratio for data whose size is in the range of 1000 to 7000.            

t is the threshold value 

 

  Pivot: First Item   Data: In random order     

  d=2 d=3 d=4 d=5 d=6 d=7 d=8 d=9 d=10 d=11 

t = 0 2.371 1.633 1.457 1.345 1.284 1.266 1.241 1.248 1.220 1.190 

t = 1 1.305 1.091 1.031 1.065 1.041 1.027 1.017 1.016 1.020 0.983 

t = 2 1.118 1.040 1.003 0.965 1.022 1.007 0.959 1.001 0.990 0.999 

t = 3 1.071 0.974 0.999 0.989 0.981 0.968 0.970 0.962 0.961 0.977 

t = 4 0.976 0.969 0.999 0.958 0.965 0.965 0.968 0.965 0.965 0.970 

Table 2:  Average ratio for data whose size is in the range of 1000 to 7000.           t 

is the threshold value 

 

Tables 1 and 2 give us the average ratio of the performance of the enhanced quicksort algorithm 

to that of the classical quicksort algorithm for data size ranging from 1000 to 7000, when the 

pivot used is the first item in the list.   Table 1 gives the performance ratio when the data is 

already sorted, and table 2 gives the performance when the data in the list is random.   As 

expected the performance of the of the enhanced quicksort is superior to the classical quicksort 
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when the data is sorted, since as was explained in [6] the asymptotic bound is 𝑂 𝑛 log 𝑛  and it is 

𝑂 𝑛2  for the classical quicksort.   Indeed as expected when the size of data increases the ratio 

becomes smaller and smaller and the ratio reaches 0.012 in the actual run time when the data is 7000 

items in size. 

When the data in the list is random, the picture is not as bright as in the first case.  However, for 

threshold level of 2 or more, we see that the performance is about the same as that of classical 

quicksort, but becomes better for higher threshold levels.    Indeed, for threshold level of 4, the 

enhanced quicksort is always slightly better than the classical quicksort. 

Strangely, the increase in the threshold level has an effect on the thinning out factor d.   As the 

threshold level increases the increase in d produces a parabolic shape that attains its minimum 

somewhere between the lowest and highest values of d.  For example, when d=5 the enhanced 

quicksort is about 4% faster than the classical quicksort.    

 

3.2.1.2. The pivot is a random item in the list 

 

  Pivot: Random element   Data: In increasing order 

  d=2 d=3 d=4 d=5 d=6 d=7 d=8 d=9 d=10 d=11 

t = 0 1.90 1.47 1.42 1.48 1.54 1.59 1.68 1.73 1.84 1.90 

t = 1 1.18 1.03 1.03 1.08 1.11 1.14 1.20 1.24 1.27 1.34 

t = 2 1.03 0.95 0.95 0.93 0.94 0.94 0.94 0.94 0.95 0.95 

t = 3 0.97 0.94 0.94 0.94 0.93 0.93 0.93 0.94 0.93 0.93 

t = 4 0.96 0.94 0.92 0.93 0.93 0.93 0.93 0.93 0.93 0.93 

Table 3:  Average ratio for data whose size is in the range of 1000 to 6000.               

t is the threshold value 

 

  Pivot: Random element   Data: In random order 

  d=2 d=3 d=4 d=5 d=6 d=7 d=8 d=9 d=10 d=11 

t = 0 1.29 1.06 1.00 0.99 0.97 0.96 0.96 0.96 0.95 0.96 

t = 1 0.98 0.92 0.91 0.90 0.89 0.90 0.89 0.91 0.90 0.89 

t = 2 0.92 0.90 0.91 0.90 0.90 0.89 0.89 0.89 0.90 0.89 

t = 3 0.91 0.90 0.90 0.90 0.90 0.89 0.90 0.90 0.89 0.89 

t = 4 0.90 0.90 0.90 0.90 0.89 0.89 0.90 0.89 0.89 0.89 

Table 4:  Average ratio for data whose size is in the range of 1000 to 6000.                
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Tables 3 and 4 above give the average ratio of the performance of the enhanced quicksort to the 

classical quicksort when the pivot is chosen as a random element in the list.   The time 

improvement is not as bright as in the case when we choose the first element in a sorted list as in 

table 1, due to the fact that for sorted items, random pivots produce better asymptotic 

performance on the average for the classical quicksort than the a first element pivots.   However, 

the enhanced quicksort quickly outperforms the classical one for t = 3 or above. 

 

3.2.1.3. The pivot is the median of three. 

 

  
Pivot: Median of three   

Data: In 

increasing order   

  d=2 d=3 d=4 d=5 d=6 d=7 d=8 d=9 d=10 d=11 

t = 0 6.34 3.15 2.32 2.26 2.40 2.73 3.12 3.61 4.07 4.64 

t = 1 1.45 1.14 1.06 1.06 1.07 1.10 1.12 1.18 1.24 1.28 

t = 2 0.98 0.95 0.94 0.96 0.94 0.95 0.95 0.94 0.96 0.97 

t = 3 0.93 0.93 0.91 0.93 0.94 0.93 0.94 0.92 0.91 0.93 

t = 4 0.93 0.92 0.91 0.94 0.92 0.93 0.92 0.92 0.92 0.92 

Table 5:  Average ratio for data whose size is in the range of 1000 to 100000.                

 

  
Pivot: Median of three   

Data: In random 

order   

  d=2 d=3 d=4 d=5 d=6 d=7 d=8 d=9 d=10 d=11 

t = 0 2.34 1.52 1.24 1.16 1.13 1.08 1.07 1.06 1.04 1.04 

t = 1 0.93 0.88 0.90 0.89 0.90 0.90 0.91 0.88 0.90 0.88 

t = 2 1.24 0.91 0.87 0.87 0.90 0.88 0.89 0.88 0.89 0.88 

t = 3 1.20 0.90 0.87 0.89 0.88 0.91 0.91 0.90 0.89 0.88 

t = 4 1.21 0.90 0.88 0.87 0.90 0.90 0.90 0.87 0.90 0.88 

Table 6:  Average ratio for data whose size is in the range of 1000 to 100000.                

 

 

Again as expected the performance of classical quicksort improves when the pivot items is not 

always the first element in the list but the median of three items in the list.  In such a case, and in 

particular for the threshold level t=0, on one hand, the median algorithm is called to find the 

pivot of the larger list almost always, since we have an already sorted list as input.  On the other 

hand, in most cases the classical quicksort would pick an item that is very close to the median if 

not the median already, since the list is sorted or almost sorted. Thus, we see that the enhanced 
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quicksort performs poorly compared to the classical quicksort in this case.   However, when the 

threshold level is increased to 2 or more and for d=3 or more we see that the enhanced quicksort 

comfortably outperforms the classical one, whether the data is already sorted or completely 

random.  Indeed, for properly chosen values of lvl and d, we get an improvement of 12% or more 

in performance. 

As one final point, in this case and unlike the previous cases, we managed to go up to sizes of 

100000 without exceeding the time limits in java, which is an indication of how superior is the 

median of three pivots to single element pivots. 

3.2.1.3.1. Choosing d=ln(n). 

Pivot: Median of three Data: In random order d= ln(n) 

 n 100 1000 2000 3000 4000 5000 6000 7000 8000 9000 

t=0 1.048 1.070 1.092 1.053 1.051 1.051 1.053 1.040 1.051 1.038 

t=1 0.905 0.917 0.930 0.929 0.943 0.928 0.938 0.934 0.935 0.940 

t=2 0.857 0.880 0.902 0.909 0.908 0.914 0.913 0.920 0.917 0.921 

t=3 0.810 0.853 0.896 0.898 0.896 0.901 0.908 0.909 0.907 0.912 

t=4 0.810 0.849 0.889 0.890 0.884 0.901 0.901 0.906 0.904 0.904 

Table 2:  Average ratio for data whose size (n) is in the range of 100 to 9000, and 

the list thinning factor d= ln(n).        t is the threshold value 

 



 
A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories. 

International Research Journal of Mathematics, Engineering and IT (IRJMEIT) 

32 | P a g e  

 

When the thinning out factor d is chosen to be the natural logarithm (ln 𝑛 ) of the size of the list, 

we can see for all threshold levels above t=0, the enhanced algorithms outperforms the classical 

quicksort.  We get further improvements as the threshold level increases, but not at the same rate 

as going from t=0 to t=1 threshold levels.  

4.  Conclusions. 

In this paper we studied the practicality of the enhanced quicksort algorithm of [6]. We presented 

results that show the effect of using the median of medians as a pivot in restricted manner can 

improve the running time of the quicksort algorithm available.  The restriction was to revert to 

the median of medians algorithm only when there is a consistent recent history or “evidence” 

that the partitioning method would lead to uneven size lists.   In our implementation we used 10 

as a factor indicating that the lists are uneven, or in other words that one of the partitioned lists is 

least 10 times the size of the other.   However, this factor needs to be studied further to get to a 

better definition of unevenness in partitioned lists size.  We studied the effect of applying the 

median of medians on thinned out lists by a factor of 2
3
, 3

3
, 4

3
, … , 11

3
.   However, our results 

show that we get better improvements by restricting the recursive calls to the median of medians 

than by thinning the list, but together they can give more practical solution to the classical 

quicksort.    

Our study of the enhanced quicksort can be adopted to other variants like the dual pivots 

quicksort of Yaroslavskiy, since it is only applied to the larger of the partitioned lists when there 
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is a degree of persistence in getting uneven size lists.   Indeed, we believe that the “controlled” 

use of the median of medians in quicksort can produce quite practical sorting algorithm even by 

today’s standards. 
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