

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories.

International Research Journal of Mathematics, Engineering and IT (IRJMEIT)

21 | P a g e

EMPIRICAL COMPARISON BETWEEN CLASSICAL QUICKSORT AND

AN ENHANCED TIME OPTIMAL QUICKSORT

Dr. Mirza Abdulla

Computer Science Department

College of Computer Studies

AMA International University, Bahrain.

ABSTRACT

Quicksort was and is still one of the most practical sorting techniques. Unfortunately, it suffers from a

worst case asymptotic running time of 𝑂 𝑛2 on a list of n items. However, its worst case running

time can be improved to 𝜃 𝑛 𝑙𝑜𝑔 𝑛 by using the median of medians technique for pivot finding but at

the expense of relative deterioration in average case performance. We compare the running time

improvement on classical quicksort when the median of medians is only called when there is mounting

evidence that it could help improve the run time performance of the pivot finding method used. We

study and present evidence that such a technique can be quite practical and yet have optimal worst

case running time.

Keywords: Quicksort, pivot, partitioning, average case performance, median.

1. Introduction.

The main task of computers is to store, manipulate and retrieve data. The manipulation of data may

require the rearrangement of data to facilitate future manipulations and retrieval operations. This

made searching and sorting fundamental problems in computing, and indeed all applications require

some form of rearrangement and retrieval of data. The problem of sorting in particular is to rearrange

the data in a particular order, usually ascending or descending. A clear example of the importance of

sorting is the telephone directory. Imagine that you want to find the number of a particular person, but

the names in the directory are random and compare the search time to that of a directory with

lexicographically ordered entries.

International Research Journal of Mathematics, Engineering and IT

Vol. 4, Issue 1, January 2017 Impact Factor- 5.489

 ISSN: (2349-0322)

© Associated Asia Research Foundation (AARF)
Website: www.aarf.asia Email : editor@aarf.asia , editoraarf@gmail.com

http://aarf.asia/irjmeit.php
http://www.aarf.asia/
mailto:editor@aarf.asia
mailto:editoraarf@gmail.com

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories.

International Research Journal of Mathematics, Engineering and IT (IRJMEIT)

22 | P a g e

Sorting as a problem existed long before the first computer was built. Indeed, it is well known that

Radix or Hollerith sort was used in the 1890 USA census and dates back to 1887. Other techniques

that date back to the mid of the twentieth century include techniques such as Bubble sort.

Sorting techniques are divided into two main categories: Comparison based and non comparison

based. For example the aforementioned Radix sort falls into the non-comparison based sorting

techniques, which Bubble sort is a comparison based sorting technique. Comparison based sorting

techniques can also be divided into ones that sort incrementally or those that use Divide and Conquer.

For example, Bubble, Insertion, and Selection Sort fall into the incremental sort techniques, while

others such as Heap sort [1], Merge sort [2], and Quick sort [3] use divide and conquer. Incremental

techniques suffer from the fact that they are quite inefficient, though variants such as Shell sort [4],

and Enhanced Selection sort [5] attain good asymptotic performance, but they are no match for the

more efficient sort techniques that use divide and conquer such as Heap sort or Quick sort.

Sorting as a problem is known to require Ω 𝑛 log 𝑛 comparisons in comparison based sorting. Heap

sort and Merge sort attain this asymptotic bound and therefore, optimal sorting techniques up to a

constant factor. Quick sort on the other hand has a worst case asymptotic performance of 𝑂 𝑛2 .

however, the average case performance of quick sort is 𝑂 𝑛 log 𝑛 . Nowadays there are hundreds of

sorting techniques, but quick sort is still considered the most practical sorting technique.

The sorting idea of quick sort is quite simple, and it is based on a partitioning scheme that would

accept a list of items and splits it into two lists based on a pivot. All the items in one list contain data

items with keys not more than the pivot, and all the items in the other list contain keys with value

greater than the pivot. This way we can arrange the items so that all data items with key values not

more than the pivot appear before all data items with key values more than the pivot. By recursing on

both lists we eventually obtain a sorted list. The pivot in this sorting technique plays an important

role in determining the efficiency of the technique. For example, if we always choose the least or

highest key valued element as the pivot, we end up with an inefficient sorting process whose

asymptotic running time is 𝑂(𝑛2). However, if we always use the median of the given list as the

pivot for the partitioning step, we end up with two lists of more or less the same size. In this case the

running time of the sorting process is 𝑂 𝑛 log 𝑛 , which matches the optimal asymptotic bound for

comparison based sorting.

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories.

International Research Journal of Mathematics, Engineering and IT (IRJMEIT)

23 | P a g e

In practice it is unlikely to always have the smallest or greatest element as the pivot for the partitioning

process. Indeed, even if we meet such a case at some point in the sorting process, it is more likely to

get a more even pivot in the next round. However, despite its superior average performance, it still

lacks the theoretical “prestige” of having 𝜃 𝑛 log 𝑛 worst case asymptotic bound. One can employ

available techniques for finding the median of a list in order to find a suitable pivot which can then be

used to partition the lists during the sorting process. However, this increases the constant factor in the

average running time of the algorithms which makes it less efficient and not as practical as some of

the other available sorting techniques, and certainly less practical than the classical quick sort.

[6] Presents a technique to deal with the problem of making the worst case running time of quick sort

be 𝜃 𝑛 log 𝑛 while at the same time leaving the average case running time mostly unaffected by the

modifications made. The technique is not to employ the median finding algorithm every time we

need to find the pivot, rather, only call a median finding routine under restricted conditions that

guarantee a worst case running time of 𝜃 𝑛 log 𝑛 , and yet improve the average running time or at

least don’t substantially affect it. The restriction on the use of the median of medians is through the

use of a threshold level which records the number of consecutive recursive calls in quicksort result in

unevenly partitioned lists. The degree of unevenness was not defined in [6], but in this paper we use

10 as evenness factor, or in other words if one of the partitioned lists is at least 10 times the size of the

smaller list we regards the partitioning as uneven.

In this paper we perform empirical tests to study the effect of the modifications suggested by [6] on

the practicality of the quick sort. We study the modified quick sort under various degrees of thinning

the original list to extract an “acceptable” pivot as well as the value of the threshold after which we

resort to the median function to find a pivot.

In section 2 we present the thinning technique used in our study, and in section 3 we present the quick

sort technique given by [6], which we would refer to in this paper as the Enhanced Quicksort.

Section 4 presents the results of comparison between the running times of classical versus the

enhanced quick sort when we use exactly the same data for both techniques.

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories.

International Research Journal of Mathematics, Engineering and IT (IRJMEIT)

24 | P a g e

2. The Thinning algorithm.

[7] Produced the first O(n) time algorithms to find the median or the kth item in a list of n items

without resorting to sorting the list. The steps can be summarized as:

1. Partition the list of 𝑛 elements into 𝑛/5 groups of 5 elements each.

2. Find the median of each group. In our implementation the median of the group is found

using insertion sort.

3. Find the median of medians by recursion on the group medians.

4. If found median of medians is indeed the median of the whole list we can stop with

answer

5. Otherwise partition the original list on this median and the larger partition would contain

the median of the whole list and all we need to do is to find the item in that list whose

rank would make it the median of the original list.

According to [6] the median shouldn’t be called on the whole list, but a small fraction of the given list.

The fraction of items chosen from the list is taken by inspecting every dth element, for some constant

d ≥ 2. The function for thinning the list is as follows:

function ThinList(a[], l, r, d, j)
 i = l;
 while (i+jd ≤ r){
 m1 = i;
 t = i + jd;
 for(s= i+j; s<t; s+=j) if (a[s] < a[m1]) m1 = s; //takes O(n/j) time
 swap(i, m1); //every item greater than
d items
 i+=jd;
 }
 i = l;
 while (𝑖 + 𝑗𝑑2 ≤ r){

m1 = i;
 t = 𝑖 + 𝑗𝑑2;
 for(s= i+jd; s<t; s+= jd) if (a[s] > a[m1]) m1 = s; //takes O(n/jd) time

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories.

International Research Journal of Mathematics, Engineering and IT (IRJMEIT)

25 | P a g e

 swap(i, m1); //every item less than d
items
 𝑖+= 𝑑2;
 }
 𝑖 = 𝑗𝑑2;
 return mom(a[l]; a[l+i]; a[l+2i]; . . . ; a[t]) // t = l + (r-l)/

} // takes O(n/d2) time.

The ThinList function scans the list during the first while loop and inspects every dth element in the

list. It finds the minimum of these items for every d inspected items and swaps that minimum with the

ith item in the list. Thus By the end of this step we know that the first item in every group of

 𝑑2 elements in the original list is at least less than or equal to d elements in that group. The ThinList

function inspects the lists again in the second while loop, but then every 𝑑2th element in groups of 𝑑3

elements in the original list. However, this time it finds the maximum of these and swaps it with the

first element in the group. This time we are guaranteed that the maximum of each group of 𝑑3items

has at least d elements in a group of value greater than or equal, and similarly d items of value less

than or equal.

These 𝑛/𝑑3 elements are moved to the beginning of the list (this step was performed during the while

loops to save time) and the median of medians algorithm is applied only to this portion of size 𝑛/𝑑3

of the list.

2. The QuickSort algorithm.

We don’t put any restriction on the use of a particular quicksort algorithm in this paper. As a matter

of fact any quicksort implementation that uses a constant number of values to determine the pivot will

do, even ones that use dual or multiple pivots. We shall refer to such an implementation as Classical

Quicksort. According to [6] the enhanced quickSort algorithm to be used is exactly the classical

quicksort, but with a minor modification. The modification is through the use of the integer variable

lvl and the integer constant: threshold. Quicksort uses the normal pivot evaluation prior to the

partitioning step. A check is made prior to recursive call for quicksort on the partitioned lists to see if

one of the partitioned lists is greater in size than the other by a factor of say 10 or more then the value

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories.

International Research Journal of Mathematics, Engineering and IT (IRJMEIT)

26 | P a g e

of the variable lvl is increased by 1. The increase of 1 to the lvl variable is only applied in the call to

the larger of the two partitions. When the value of lvl reaches a level determined by the threshold

constant we set the lvl variable again to 0 and call the ThinList function explained earlier to find the

pivot instead of the normal pivot finding step. This way the median of medians is called on a small

fraction of the list and only when the normal pivot finding technique keeps giving us pivots that

produce highly uneven lists for a number of consecutive recursive calls.

 if (lvl ≥ threshold){
lvl=0;
pivotIndex =ThinList(input, low, high, d, lvl);
pivot=input[pivotIndex];}

 else pivot = normal pivot finding technique;
 Perform normal partitioning step
 Let sizeLeft be size of the list with elements ≤ the pivot;

Let sizeRight be size of the other list with elements > the pivot;

 if (sizeLeft > 10* sizeRight){lvl++;
 quicksort (input, low, newHigh, d, lvl, threshold);
 quicksort (input, newLow, high, d, 0, threshold);
 }

elseif (sizeRight > 10* sizeLeft){lvl++;
 quicksort (input, low, newHigh, d, 0, threshold);
 quicksort (input, newLow, high, d, lvl, threshold);
 }

else {
 quicksort (input, low, newHigh, d, 0, threshold);
 quicksort (input, newLow, high, d, 0, threshold);
 }
3. Empirical comparison

3.1. Tests made

The tests made for comparison between the enhanced quicksort and classical quicksort using Java.

The comparisons were made on the same data as input to each routine using: first item, median of

three, and a random item, as the pivot in the classical quicksort and in the enhanced quicksort. Each

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories.

International Research Journal of Mathematics, Engineering and IT (IRJMEIT)

27 | P a g e

routine was run for 100 times in each case and the average of the run times was obtained. The length

of data was taken from 100 to 10000 when the first element or a random element was used as the

pivot, and from 100 to 100000 when the pivot was the median of three. The timing was recorded

using Java System.nanoTime() to record the time in nanoseconds, and the random number generator

in Java rand.nextInt() was used for generating random numbers as data. As mentioned earlier the

code for the classical and the enhanced quicksort algorithms was exactly the same except mainly the

line where the pivot is to be determined. Moreover, all tests were performed on the same computer

system.

We understand that as is the case in all empirical tests many factors play a role in determining the

running time of an algorithm. For example, the hardware system being used, the operating system, the

compiler and programming language used and its efficiency in handling recursive and non recursive

calls, are factors among other factors that affect the running time of an algorithm. However, it should

be evident from the above that we tried to minimize the effect of factors that affect the comparison

between the algorithms. The random number generation allows us to compare algorithms on random

data; however, most real data are not entirely random. Indeed, data in databases can actually be

mostly sorted. To deal with this case we also investigated the performance of the algorithms when the

data are sorted, reverse sorted.

The time the enhanced quicksort algorithm would take on already sorted data is of particular

importance. This is due to the fact that its worst case running time is supposed to be 𝜃 𝑛 log 𝑛 , but

with a slightly greater constant factor.

In comparing the times taken by the algorithms we were interested in the ratio of the running time of

the enhanced quicksort to that of the classical quicksort. Such a ratio can indicate whether the

enhanced quicksort is an improvement over the classical quicksort with random and ordered data or

not. For example, a ratio of 1 means both the enhanced and classical algorithms took the same

amount of time to perform the sort. A ratio value less than 1 implies that the enhanced algorithm

sorted the same data in less time than the classical quicksort. Similarly, a ratio value of more than 1

indicates that the classical quicksort outperformed the enhanced quicksort.

The tests were performed with various values of d and lvl. The range of values of d was from 2 to 11,

and for lvl the range was from 0 to 4. It is worth reiterating that the value of lvl indicates the levels or

the number of recursive calls we wait for before reverting to the ThinList function. For example,

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories.

International Research Journal of Mathematics, Engineering and IT (IRJMEIT)

28 | P a g e

when lvl is 0 we call the median of medians on the larger list whenever one of the lists is at least 10

times more than the other. On the other hand if the value of lvl is 1 then we don’t call the ThinList

function unless this is the second consecutive recursive call with the larger of the lists at least 10 times

of the other. The value of d on the other hand gives the thinning factor for the list, since we only look

at
𝑛

𝑑3 elements of the list for the median of medians.

3.2. Results

3.2.1. Performance Ratio Results

3.2.1.1. The pivot is the first item in the list

 Pivot: First Item Data: In increasing order

 d=2 d=3 d=4 d=5 d=6 d=7 d=8 d=9 d=10 d=11

t = 0 0.1 0.07 0.06 0.05 0.06 0.06 0.07 0.08 0.09 0.09

t = 1 0.04 0.03 0.03 0.03 0.04 0.04 0.05 0.06 0.08 0.08

t = 2 0.04 0.03 0.03 0.03 0.04 0.04 0.05 0.06 0.07 0.07

t = 3 0.04 0.03 0.03 0.04 0.04 0.05 0.06 0.07 0.07 0.09

t = 4 0.04 0.03 0.03 0.05 0.04 0.06 0.06 0.07 0.08 0.09

Table 1: Average ratio for data whose size is in the range of 1000 to 7000.

t is the threshold value

 Pivot: First Item Data: In random order

 d=2 d=3 d=4 d=5 d=6 d=7 d=8 d=9 d=10 d=11

t = 0 2.371 1.633 1.457 1.345 1.284 1.266 1.241 1.248 1.220 1.190

t = 1 1.305 1.091 1.031 1.065 1.041 1.027 1.017 1.016 1.020 0.983

t = 2 1.118 1.040 1.003 0.965 1.022 1.007 0.959 1.001 0.990 0.999

t = 3 1.071 0.974 0.999 0.989 0.981 0.968 0.970 0.962 0.961 0.977

t = 4 0.976 0.969 0.999 0.958 0.965 0.965 0.968 0.965 0.965 0.970

Table 2: Average ratio for data whose size is in the range of 1000 to 7000. t

is the threshold value

Tables 1 and 2 give us the average ratio of the performance of the enhanced quicksort algorithm

to that of the classical quicksort algorithm for data size ranging from 1000 to 7000, when the

pivot used is the first item in the list. Table 1 gives the performance ratio when the data is

already sorted, and table 2 gives the performance when the data in the list is random. As

expected the performance of the of the enhanced quicksort is superior to the classical quicksort

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories.

International Research Journal of Mathematics, Engineering and IT (IRJMEIT)

29 | P a g e

when the data is sorted, since as was explained in [6] the asymptotic bound is 𝑂 𝑛 log 𝑛 and it is

𝑂 𝑛2 for the classical quicksort. Indeed as expected when the size of data increases the ratio

becomes smaller and smaller and the ratio reaches 0.012 in the actual run time when the data is 7000

items in size.

When the data in the list is random, the picture is not as bright as in the first case. However, for

threshold level of 2 or more, we see that the performance is about the same as that of classical

quicksort, but becomes better for higher threshold levels. Indeed, for threshold level of 4, the

enhanced quicksort is always slightly better than the classical quicksort.

Strangely, the increase in the threshold level has an effect on the thinning out factor d. As the

threshold level increases the increase in d produces a parabolic shape that attains its minimum

somewhere between the lowest and highest values of d. For example, when d=5 the enhanced

quicksort is about 4% faster than the classical quicksort.

3.2.1.2. The pivot is a random item in the list

 Pivot: Random element Data: In increasing order

 d=2 d=3 d=4 d=5 d=6 d=7 d=8 d=9 d=10 d=11

t = 0 1.90 1.47 1.42 1.48 1.54 1.59 1.68 1.73 1.84 1.90

t = 1 1.18 1.03 1.03 1.08 1.11 1.14 1.20 1.24 1.27 1.34

t = 2 1.03 0.95 0.95 0.93 0.94 0.94 0.94 0.94 0.95 0.95

t = 3 0.97 0.94 0.94 0.94 0.93 0.93 0.93 0.94 0.93 0.93

t = 4 0.96 0.94 0.92 0.93 0.93 0.93 0.93 0.93 0.93 0.93

Table 3: Average ratio for data whose size is in the range of 1000 to 6000.

t is the threshold value

 Pivot: Random element Data: In random order

 d=2 d=3 d=4 d=5 d=6 d=7 d=8 d=9 d=10 d=11

t = 0 1.29 1.06 1.00 0.99 0.97 0.96 0.96 0.96 0.95 0.96

t = 1 0.98 0.92 0.91 0.90 0.89 0.90 0.89 0.91 0.90 0.89

t = 2 0.92 0.90 0.91 0.90 0.90 0.89 0.89 0.89 0.90 0.89

t = 3 0.91 0.90 0.90 0.90 0.90 0.89 0.90 0.90 0.89 0.89

t = 4 0.90 0.90 0.90 0.90 0.89 0.89 0.90 0.89 0.89 0.89

Table 4: Average ratio for data whose size is in the range of 1000 to 6000.

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories.

International Research Journal of Mathematics, Engineering and IT (IRJMEIT)

30 | P a g e

Tables 3 and 4 above give the average ratio of the performance of the enhanced quicksort to the

classical quicksort when the pivot is chosen as a random element in the list. The time

improvement is not as bright as in the case when we choose the first element in a sorted list as in

table 1, due to the fact that for sorted items, random pivots produce better asymptotic

performance on the average for the classical quicksort than the a first element pivots. However,

the enhanced quicksort quickly outperforms the classical one for t = 3 or above.

3.2.1.3. The pivot is the median of three.

Pivot: Median of three

Data: In

increasing order

 d=2 d=3 d=4 d=5 d=6 d=7 d=8 d=9 d=10 d=11

t = 0 6.34 3.15 2.32 2.26 2.40 2.73 3.12 3.61 4.07 4.64

t = 1 1.45 1.14 1.06 1.06 1.07 1.10 1.12 1.18 1.24 1.28

t = 2 0.98 0.95 0.94 0.96 0.94 0.95 0.95 0.94 0.96 0.97

t = 3 0.93 0.93 0.91 0.93 0.94 0.93 0.94 0.92 0.91 0.93

t = 4 0.93 0.92 0.91 0.94 0.92 0.93 0.92 0.92 0.92 0.92

Table 5: Average ratio for data whose size is in the range of 1000 to 100000.

Pivot: Median of three

Data: In random

order

 d=2 d=3 d=4 d=5 d=6 d=7 d=8 d=9 d=10 d=11

t = 0 2.34 1.52 1.24 1.16 1.13 1.08 1.07 1.06 1.04 1.04

t = 1 0.93 0.88 0.90 0.89 0.90 0.90 0.91 0.88 0.90 0.88

t = 2 1.24 0.91 0.87 0.87 0.90 0.88 0.89 0.88 0.89 0.88

t = 3 1.20 0.90 0.87 0.89 0.88 0.91 0.91 0.90 0.89 0.88

t = 4 1.21 0.90 0.88 0.87 0.90 0.90 0.90 0.87 0.90 0.88

Table 6: Average ratio for data whose size is in the range of 1000 to 100000.

Again as expected the performance of classical quicksort improves when the pivot items is not

always the first element in the list but the median of three items in the list. In such a case, and in

particular for the threshold level t=0, on one hand, the median algorithm is called to find the

pivot of the larger list almost always, since we have an already sorted list as input. On the other

hand, in most cases the classical quicksort would pick an item that is very close to the median if

not the median already, since the list is sorted or almost sorted. Thus, we see that the enhanced

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories.

International Research Journal of Mathematics, Engineering and IT (IRJMEIT)

31 | P a g e

quicksort performs poorly compared to the classical quicksort in this case. However, when the

threshold level is increased to 2 or more and for d=3 or more we see that the enhanced quicksort

comfortably outperforms the classical one, whether the data is already sorted or completely

random. Indeed, for properly chosen values of lvl and d, we get an improvement of 12% or more

in performance.

As one final point, in this case and unlike the previous cases, we managed to go up to sizes of

100000 without exceeding the time limits in java, which is an indication of how superior is the

median of three pivots to single element pivots.

3.2.1.3.1. Choosing d=ln(n).

Pivot: Median of three Data: In random order d= ln(n)

 n 100 1000 2000 3000 4000 5000 6000 7000 8000 9000

t=0 1.048 1.070 1.092 1.053 1.051 1.051 1.053 1.040 1.051 1.038

t=1 0.905 0.917 0.930 0.929 0.943 0.928 0.938 0.934 0.935 0.940

t=2 0.857 0.880 0.902 0.909 0.908 0.914 0.913 0.920 0.917 0.921

t=3 0.810 0.853 0.896 0.898 0.896 0.901 0.908 0.909 0.907 0.912

t=4 0.810 0.849 0.889 0.890 0.884 0.901 0.901 0.906 0.904 0.904

Table 2: Average ratio for data whose size (n) is in the range of 100 to 9000, and

the list thinning factor d= ln(n). t is the threshold value

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories.

International Research Journal of Mathematics, Engineering and IT (IRJMEIT)

32 | P a g e

When the thinning out factor d is chosen to be the natural logarithm (ln 𝑛) of the size of the list,

we can see for all threshold levels above t=0, the enhanced algorithms outperforms the classical

quicksort. We get further improvements as the threshold level increases, but not at the same rate

as going from t=0 to t=1 threshold levels.

4. Conclusions.

In this paper we studied the practicality of the enhanced quicksort algorithm of [6]. We presented

results that show the effect of using the median of medians as a pivot in restricted manner can

improve the running time of the quicksort algorithm available. The restriction was to revert to

the median of medians algorithm only when there is a consistent recent history or “evidence”

that the partitioning method would lead to uneven size lists. In our implementation we used 10

as a factor indicating that the lists are uneven, or in other words that one of the partitioned lists is

least 10 times the size of the other. However, this factor needs to be studied further to get to a

better definition of unevenness in partitioned lists size. We studied the effect of applying the

median of medians on thinned out lists by a factor of 2
3
, 3

3
, 4

3
, … , 11

3
. However, our results

show that we get better improvements by restricting the recursive calls to the median of medians

than by thinning the list, but together they can give more practical solution to the classical

quicksort.

Our study of the enhanced quicksort can be adopted to other variants like the dual pivots

quicksort of Yaroslavskiy, since it is only applied to the larger of the partitioned lists when there

0.800

0.850

0.900

0.950

1.000

1.050

1.100

1.150

100 1000 2000 3000 4000 5000 6000 7000 8000 9000

t=0

t=1

t=2

t=3

t=4

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories.

International Research Journal of Mathematics, Engineering and IT (IRJMEIT)

33 | P a g e

is a degree of persistence in getting uneven size lists. Indeed, we believe that the “controlled”

use of the median of medians in quicksort can produce quite practical sorting algorithm even by

today’s standards.

References

[1] Williams, J. W. J. , Algorithm 232 - Heapsort, Comm. ACM, 7 (6): 347–348, 1964.

[2] Knuth, Donald, "Section 5.2.4: Sorting by Merging". Sorting and Searching. The Art of

Computer Programming. 3, 2nd ed., Addison-Wesley. pp. 158–168, 1998. ISBN 0-201-

89685-0.

[3] Hoare, C. A. R. (1961). "Algorithm 64: Quicksort". Comm. ACM. 4 (7): 321.

[4] Shell, D. L. (1959). "A High-Speed Sorting Procedure" (PDF). Communications of the

ACM. 2 (7): 30–32.

[5] Mirza Abdulla, An efficient enhancement to selection sort, submitted.

[6] Mirza Abdulla, Quick Sort with Optimal Worst Case Running Time, American Journal of

Engineering Research (AJER), Volume-6, Issue-1, pp-32-36, 2017.

[7] Blum, M.; Floyd, R. W.; Pratt, V. R.; Rivest, R. L.; Tarjan, R. E. Time bounds for

selection. Journal of Computer and System Sciences. 7 (4): 448–461, August 1973.

[8] Sebastian Wild. 2013. Java 7’s Dual Pivot Quicksort. Master’s thesis. University of

Kaiserslautern.

[9] Mirza Abdulla, Selection Sort with Improved Asymptotic Time Bounds, The International

Journal Of Engineering And Science (IJES), Vol 5, Issue 5, pp 125-130, 2016.

[10] Mirza Abdulla, Marrying Inefficient Sorting Techniques Can Give Birth to a Substantially

More Efficient Algorithm, International Journal of Computer Science and Mobile

Applications, Vol.3 Issue. 12, pp. 15-21, 2015.

[11] Mirza Abdulla, An O(n^(4/3)) Worst Case Time Selection Sort Algorithm , International

Journal of Computer and Electronics Research, Vol 5, Issue 3, pp. 36-41, 2016.

https://en.wikipedia.org/w/index.php?title=J._W._J._Williams&action=edit&redlink=1
https://en.wikipedia.org/wiki/Communications_of_the_ACM
https://en.wikipedia.org/wiki/Donald_Knuth
https://en.wikipedia.org/wiki/The_Art_of_Computer_Programming
https://en.wikipedia.org/wiki/The_Art_of_Computer_Programming
https://en.wikipedia.org/wiki/The_Art_of_Computer_Programming
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-201-89685-0
https://en.wikipedia.org/wiki/Special:BookSources/0-201-89685-0
https://en.wikipedia.org/wiki/Tony_Hoare
https://en.wikipedia.org/wiki/Communications_of_the_ACM
https://en.wikipedia.org/wiki/Manuel_Blum
https://en.wikipedia.org/wiki/Robert_Floyd
https://en.wikipedia.org/wiki/Vaughan_Pratt
https://en.wikipedia.org/wiki/Ron_Rivest
https://en.wikipedia.org/wiki/Robert_Tarjan
http://people.csail.mit.edu/rivest/pubs/BFPRT73.pdf
http://people.csail.mit.edu/rivest/pubs/BFPRT73.pdf
http://people.csail.mit.edu/rivest/pubs/BFPRT73.pdf

