A NEW CLASS OF MINIMAL AND MAXIMAL SETS VIA BĜ - CLOSED SET

Dr. R. Subasree
Assistant Professor of Mathematics, Ramco Insitute of Technology, Rajapalayam, TN, India

Abstract

 spaces are introduced and characterized so as to determine their behaviour relative to subspaces.

KEYWORDS

$b \hat{g}-c l o s e d ~ s e t s, ~ b \hat{g}-$ minimal closed set, $b \hat{g}-$ maximal closed set, $b \hat{g}-$ minimal open set and $b \hat{g}-$ maximal open set.

2000 MATHEMATICS SUBJECT CLASSIFICATION: 54A05, 54B05.

1 INTRODUCTION

Levine[9] introduced generalized closed (briefly g-closed) sets and studied their basic properties. Veera Kumar [12] introduced $\hat{g}-$ Closed sets in topological spaces. Andrijevic[1] introduced a new class of open sets called b-open sets. R.Subasree and M.Mariasingam[11] introduced a new class of sets called bg -closed sets.
Recently minimal open sets and maximal open sets in topological spaces were introduced and studied by F.Nakaoka and N.Oda [5]. In section 3, a new class of sets called bĝ-minimal and bĝ-maximal closed sets in topological spaces are introduced and characterized so as to determine their behaviour relative to subspaces. The purpose of this present paper is to study some fundamental properties related to generalized minimal closed sets. The complement of a generalized minimal closed set is said to be a generalized maximal open set.

© Associated Asia Research Foundation (AARF)

2

PRELIMINARIES
Throughout this paper (X, τ) (or simply X) represents a non-empty topological space on which no separation axioms are assumed unless otherwise mentioned. For a subset A of $X, \operatorname{cl}(\mathrm{~A}), \operatorname{Int}(\mathrm{A})$ and A^{c} denote the closure of A , interior of A and the complement of A respectively. Let us recall the following definitions.

DEFINITION 2.1[5] : A subset A of a space (X, τ) is called a
(i) A minimal open (resp. minimal closed) set if any open (resp. closed) subset of X which is contained in A , is either A or Φ.
(ii) A maximal open (resp. maximal closed) set if any open (resp. closed) subset of X which contains A, is either A or X.

The following duality principle holds [5] for subset A of a topological space X :
(1) A is minimal closed if and only if $X-\mathrm{A}$ is maximal open.
(2) A is maximal closed if and only if $X-\mathrm{A}$ is minimal open.

DEFINITION 2.2 [5]: A topological space is said to be locally finite space if each of its elements is contained in a finite open set.
DEFINITION 2.3: A subset A of a space (X, τ) is called a
(i) $\mathrm{b}-$ open $\operatorname{set}[1]$ if $\mathrm{A} \subseteq \mathrm{cl}[\operatorname{Int}(\mathrm{A})] \cup \operatorname{Int}[\mathrm{cl}(\mathrm{A})]$
(ii) generalized closed (briefly g-closed) set[9] if $\operatorname{cl}(\mathrm{A}) \subseteq \mathrm{U}$ whenever $\mathrm{A} \subseteq \mathrm{U}$ and U is open set in X.
(iii) $\hat{\mathrm{g}}$-closed set[12] if $\mathrm{cl}(\mathrm{A}) \subseteq \mathrm{U}$ whenever $\mathrm{A} \subseteq \mathrm{U}$ and U is a semi-open set in (X, τ).
(iv) $b \hat{g}-c l o s e d ~ s e t[11] ~ i f ~ b c l(A) \subseteq U ~ w h e n e v e r ~ A \subseteq U ~ a n d ~ U ~ i s ~ \hat{g}-$ open set in (X, τ).

The complement of $a \mathrm{~b}$-open set is called b -closed set and the complement of a g-closed(resp. \hat{g}-closed and $\mathrm{b} \hat{\mathrm{g}}$-closed) set is called g -open (resp. $\hat{\mathrm{g}}$-open and $\mathrm{b} \hat{\mathrm{g}}$-open) set .
The intersection of all bg-closed sets of X containing A is called the $b \hat{g}$-closure and is denoted by $\mathrm{b} \hat{\mathrm{g}}-\mathrm{cl}(\mathrm{A})$. The family of all $\mathrm{b}-\mathrm{closed}$ (resp. $\mathrm{g}-\mathrm{closed}, \hat{\mathrm{g}}-\mathrm{closed}$ and $\mathrm{b} \hat{\mathrm{g}}-\mathrm{closed}$) subsets of a space X is denoted by $\mathrm{b}-\mathrm{C}(X)$ (resp. $\mathrm{g}-\mathrm{C}(X), \hat{\mathrm{g}}-\mathrm{C}(X)$ and $\mathrm{b} \hat{\mathrm{g}}-\mathrm{C}(X)$).

3 MINIMAL b \hat{g}-OPEN SETS AND MAXIMAL bĝ -CLOSED SETS

In this section we introduce and study the properties of Minimal bg-open sets and Maximal bĝ-closed sets.

DEFINITION 3.1: A proper non-empty bg $\hat{\mathrm{g}}$-open subset A of X is said to be a minimal $\mathrm{b} \hat{\mathrm{g}}$-open if any $\quad \mathrm{b} \hat{\mathrm{g}}-$ open set contained in A is Φ or A .

© Associated Asia Research Foundation (AARF)

DEFINITION 3.2: A proper non-empty bg-closed subset A of X is said to be a maximal $\mathrm{b} \hat{\mathrm{g}}$-closed if any $\mathrm{b} \hat{\mathrm{g}}$-closed set containing A is either X or A .

EXAMPLE 3.3: Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$ with a topology $\tau=\{\mathrm{X}, \Phi,\{\mathrm{b}\},\{\mathrm{b}, \mathrm{d}\},\{\mathrm{a}, \mathrm{b}, \mathrm{d}\}\}$
$b \mathrm{~g}-\mathrm{O}(\mathrm{X})=\{X, \Phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{d}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{d}\},\{\mathrm{b}, \mathrm{c}\},\{\mathrm{b}, \mathrm{d}\},\{\mathrm{a}, \mathrm{b}, \mathrm{c}\},\{\mathrm{a}, \mathrm{b}, \mathrm{d}\},\{\mathrm{b}, \mathrm{c}, \mathrm{d}\}\}$
$\mathrm{bg}-\mathrm{C}(\mathrm{X})=\{\mathrm{X}, \Phi,\{\mathrm{a}\},\{\mathrm{c}\},\{\mathrm{d}\},\{\mathrm{a}, \mathrm{c}\},\{\mathrm{a}, \mathrm{d}\},\{\mathrm{b}, \mathrm{c}\},\{\mathrm{c}, \mathrm{d}\},\{\mathrm{a}, \mathrm{b}, \mathrm{c}\},\{\mathrm{a}, \mathrm{c}, \mathrm{d}\},\{\mathrm{b}, \mathrm{c}, \mathrm{d}\}\}$
Here $\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{d}\}$ are minimal $\mathrm{b} \hat{\mathrm{g}}-\mathrm{open}$ sets of X and $\{\mathrm{a}, \mathrm{b}, \mathrm{c}\},\{\mathrm{a}, \mathrm{c}, \mathrm{d}\},\{\mathrm{b}, \mathrm{c}, \mathrm{d}\}$ are maximal $\mathrm{b} \hat{\mathrm{g}}-\mathrm{closed}$ sets of X.

REMARK 3.4: Minimal open and minimal b \hat{g}-open sets are independent to each other.
EXAMPLE 3.5: Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ with a topology $\tau=\{\mathrm{X}, \Phi,\{\mathrm{a}, \mathrm{c}\}\}$
$\mathrm{bg}-\mathrm{O}(\mathrm{X})=\{\mathrm{X}, \Phi,\{\mathrm{a}\},\{\mathrm{c}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{c}\},\{\mathrm{b}, \mathrm{c}\}\}$
Here $\{\mathrm{a}, \mathrm{c}\}$ is minimal open but not minimal $\mathrm{b} \hat{\mathrm{g}}$-open and $\{\mathrm{a}\},\{\mathrm{c}\}$ are minimal $\mathrm{b} \hat{\mathrm{g}}-\mathrm{open}$ sets but not minimal open.

REMARK 3.6: Maximal closed and Maximal bĝ-closed sets are independent to each other:
EXAMPLE 3.7: In Example (3.5), $\{b\}$ is maximal closed but not maximal bĝ-closed and $\{a, b\},\{b, c\}$ are maximal bg -closed but not maximal closed.
DEFINITION 3.8: A proper non-empty bg-closed subset A of X is said to be a minimal b \hat{g}-closed if any $\mathrm{b} \hat{\mathrm{g}}$-closed set contained in A is Φ or A .

DEFINITION 3.9: A proper non-empty $b \hat{g}$-open subset A of X is said to be a maximal $b \hat{g}-$ open if any $\mathrm{b} \hat{\mathrm{g}}$-open set containing A is either X or A .

E \boldsymbol{X} AMPLE 3.10: Let $X=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}, \tau=\{\mathrm{X}, \Phi,\{\mathrm{a}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{d}\},\{\mathrm{a}, \mathrm{b}, \mathrm{d}\}\}$
$\mathrm{bg}-\mathrm{O}(\mathrm{X})=\{\mathrm{X}, \Phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{d}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{c}\},\{\mathrm{a}, \mathrm{d}\},\{\mathrm{b}, \mathrm{d}\},\{\mathrm{a}, \mathrm{b}, \mathrm{c}\},\{\mathrm{a}, \mathrm{b}, \mathrm{d}\},\{\mathrm{a}, \mathrm{c}, \mathrm{d}\}\}$
$\mathrm{b} \hat{\mathrm{g}}-\mathrm{C}(\mathrm{X})=\{\mathrm{X}, \Phi,\{\mathrm{b}\},\{\mathrm{c}\},\{\mathrm{d}\},\{\mathrm{a}, \mathrm{c}\},\{\mathrm{b}, \mathrm{c}\},\{\mathrm{b}, \mathrm{d}\},\{\mathrm{c}, \mathrm{d}\},\{\mathrm{a}, \mathrm{b}, \mathrm{c}\},\{\mathrm{a}, \mathrm{c}, \mathrm{d}\},\{\mathrm{b}, \mathrm{c}, \mathrm{d}\}\}$
Here $\{\mathrm{b}\},\{\mathrm{c}\}$ and $\{\mathrm{d}\}$ are minimal $\mathrm{b} \hat{\mathrm{g}}$-closed sets and $\{\mathrm{a}, \mathrm{b}, \mathrm{c}\},\{\mathrm{a}, \mathrm{b}, \mathrm{d}\}$ and $\{\mathrm{a}, \mathrm{c}, \mathrm{d}\}$ are maximal bg-open sets.

THEOREM 3.11:

(i) Let A be minimal $\mathrm{b} \hat{\mathrm{g}}-$ open set and B be $\mathrm{a} \mathrm{b} \hat{\mathrm{g}}-$ open set. Then $\mathrm{A} \cap \mathrm{B}=\Phi$ or $\mathrm{A} \subset \mathrm{B}$.
(ii) Let A and B be minimal bg $\hat{-}-$ open sets. Then $\mathrm{A} \cap \mathrm{B}=\Phi$ or $\mathrm{A}=\mathrm{B}$

PROOF:

(i) Let A be a minimal $\mathrm{b} \hat{\mathrm{g}}$-open set and B be a $\mathrm{b} \hat{\mathrm{g}}$-open set. If $\mathrm{A} \cap \mathrm{B}=\Phi$, then there is nothing to prove. If $\mathrm{A} \cap \mathrm{B} \neq \Phi$. Then $\mathrm{A} \cap \mathrm{B} \subset \mathrm{A}$. Since A is minimal $\mathrm{b} \hat{\mathrm{g}}-$ open set, we have $\mathrm{A} \cap \mathrm{B}=\mathrm{A}$. Therefore $\mathrm{A} \subset \mathrm{B}$.
(ii) Let A and B be minimal $\mathrm{b} \hat{g}-$ open sets. If $\mathrm{A} \cap \mathrm{B} \neq \Phi$, then $\mathrm{A} \subset \mathrm{B}$ and $\mathrm{B} \subset \mathrm{A}$ by (i). Hence $\mathrm{A}=\mathrm{B}$.

© Associated Asia Research Foundation (AARF)

THEOREM 3.12: Let A be a minimal $b \hat{g}-$ open set. If $x \in A$, then $A \subset B$ for any open regular neighborhood of B of x.
PROOF: Let A be a minimal $\mathrm{b} \hat{\mathrm{g}}$-open set and x be an element of A. Suppose there exists a regular open neighborhood A of x such that $A \not \subset B$. Since B is regular, $A \cap B$ is minimal $b \hat{g}-$ open with $\mathrm{A} \cap \mathrm{B} \subset \mathrm{A}$ and $\mathrm{A} \cap \mathrm{B} \neq \Phi$. Since A is a minimal $\mathrm{b} \hat{\mathrm{g}}$-open set, we have $\mathrm{A} \cap \mathrm{B}=\mathrm{A}$. That is $\mathrm{A} \subset \mathrm{B}$, which is a contradiction for $\mathrm{A} \not \subset \mathrm{B}$.Therefore $\mathrm{A} \subset \mathrm{B}$ for any open regular neighborhood of B of x.
THEOREM 3.13: Let A be a minimal $b \hat{g}-$ open set. If $x \in A$, then $A \subset B$ for some $b \hat{g}-$ open set B containing x.
THEOREM 3.14: Let A be a minimal $b \hat{g}-$ open set. If $x \in A$, then $A=\cap\{B: B$ is $b \hat{g}-$ open set containing $x\}$ for any element x in A.

PROOF: By theorem (3.13) and A is $b \hat{g}-$ open set containing x, we have $A \subset\{B$: B is $b \hat{g}-$ open set containing $x\} \subset \mathrm{A}$. Hence $\mathrm{A}=\cap\{\mathrm{B}: \mathrm{B}$ is $\mathrm{b} \hat{\mathrm{g}}$-open set containing $x\}$
THEOREM 3.15: For any $x \in X$ and a subset A in $X, x \in \mathrm{~b} \hat{g}-\mathrm{Cl}(\mathrm{A})$ if and only if $\mathrm{U} \cap \mathrm{A} \neq \Phi$ for every $\mathrm{b} \hat{\mathrm{g}}$-open set U containing x.
PROOF: Let $x \in X, \mathrm{~A} \subset X$ and $x \in \mathrm{~b} \hat{\mathrm{~g}}-\mathrm{Cl}(\mathrm{A})$. We prove the result by the method of contradiction. Suppose there exists a bg-open set U containing x such that $\mathrm{U} \cap \mathrm{A}=\Phi$. Then $\mathrm{A} \subset X-\mathrm{U}$ and $X-\mathrm{U}$ is $\mathrm{b} \hat{\mathrm{g}}-\mathrm{closed}$. We have $\mathrm{b} \hat{\mathrm{g}}-\mathrm{Cl}(\mathrm{A}) \subset X-\mathrm{U}$. This gives $x \notin \mathrm{~b} \hat{\mathrm{~g}}-\mathrm{Cl}(\mathrm{A})$, which is contradiction. Hence $\mathrm{U} \cap \mathrm{A} \neq \Phi$ for every $\mathrm{b} \hat{g}$-open set U containing x.

Conversely, let $\mathrm{U} \cap \mathrm{A} \neq \Phi$ for every $\mathrm{b} \hat{\mathrm{g}}$-open set U containing x. We prove the result by the method of contradiction. suppose $x \notin \mathrm{~b} \hat{\mathrm{~g}}-\mathrm{Cl}(\mathrm{A})$. Then there exists a $\mathrm{b} \hat{\mathrm{g}}-\mathrm{closed}$ subset V containing A such that $x \notin \mathrm{~V}$. Then $x \in X-\mathrm{V}$ and $X-\mathrm{V}$ is $\mathrm{bg}-\mathrm{open}$. Also $(X-\mathrm{V}) \cap \mathrm{A}=\Phi$, which is a contradiction. Hence $x \in \mathrm{~b} \hat{\mathrm{~g}}-\mathrm{Cl}(\mathrm{A})$.
THEOREM 3.16: Let A be a non-empty $b \hat{g}-$ open set. Then the following are equivalent:
(1) A is a minimal bg-open set.
(2) $\mathrm{A} \subset \mathrm{b} \hat{\mathrm{g}}-\mathrm{Cl}(\mathrm{U})$, for any non-empty subset U of A .
(3) $\mathrm{b} \hat{\mathrm{g}}-\mathrm{Cl}(\mathrm{A})=\mathrm{b} \hat{\mathrm{g}}-\mathrm{Cl}(\mathrm{U})$, for any non-empty subset U of A .

PROOF: $(1) \Rightarrow(2)$: Let A be minimal $b \hat{g}-$ open set. Let $x \in \mathrm{~A}$ and U be a non-empty subset of A . By theorem (3.13), there is a bg $\hat{\mathrm{g}}$-open set B containing x such that $\mathrm{A} \subset \mathrm{B}$. Then we have $\mathrm{U} \subset \mathrm{A} \subset \mathrm{B}$ which implies $U \subset B$. Now $U=U \cap A \subset U \cap B$. Since U is non-empty, we have $U \cap B \neq \Phi$. Since B is any $\mathrm{b} \hat{\mathrm{g}}-\mathrm{open}$ set containing x, by above theorem (3.15), $x \in \mathrm{~b} \hat{\mathrm{~g}}-\mathrm{Cl}(\mathrm{U})$. That is $x \in \mathrm{~A}$ implies $x \in \mathrm{~b} \hat{\mathrm{~g}}-\mathrm{Cl}(\mathrm{U})$. Hence $\mathrm{A} \subset \mathrm{b} \hat{\mathrm{g}}-\mathrm{Cl}(\mathrm{U})$, for any non-empty subset U of A .

© Associated Asia Research Foundation (AARF)

(2) \Rightarrow (3): Let U be a non-empty subset of A and $A \subset b \hat{g}-\mathrm{Cl}(\mathrm{U})$. Then $\mathrm{b} \hat{\mathrm{g}}-\mathrm{Cl}(\mathrm{U}) \subset \mathrm{b} \hat{\mathrm{g}}-\mathrm{Cl}(\mathrm{A})$ and $b \hat{g}-\mathrm{Cl}(\mathrm{A}) \subset \mathrm{b} \hat{g}-\mathrm{Cl}(\mathrm{U})$. Hence $\mathrm{b} \hat{\mathrm{g}}-\mathrm{Cl}(\mathrm{A})=\mathrm{b} \hat{\mathrm{g}}-\mathrm{Cl}(\mathrm{U})$, for any non-empty subset U of A .
(3) $\Rightarrow(1)$: Let $b \hat{g}-\mathrm{Cl}(\mathrm{A})=\mathrm{b} \hat{\mathrm{g}}-\mathrm{Cl}(\mathrm{U})$, for any non-empty subset U of A . Suppose A is not a minimal $b \hat{g}-$ open set. Then there exists a non-empty $b \hat{g}-$ open set B such that $B \subset A$ and $B \neq A$. Now there exists an element $x \in \mathrm{~A}$ such that $x \notin \mathrm{~B}$, which implies $x \in X-\mathrm{B}$. That is $\mathrm{b} \hat{\mathrm{g}}-\mathrm{Cl}(\{x\}) \subset \mathrm{b} \hat{g}-\mathrm{Cl}(X-\mathrm{B})=X-\mathrm{B}$, as $X-\mathrm{B}$ is $\mathrm{b} \hat{\mathrm{g}}-\mathrm{closed}$ in X. It follows that $\mathrm{b} \hat{\mathrm{g}}-\mathrm{Cl}(\{x\}) \neq \mathrm{b} \hat{\mathrm{g}}-\mathrm{Cl}(\mathrm{A})$. This is a contradiction to the fact that $\mathrm{b} \hat{\mathrm{g}}-\mathrm{Cl}(\{x\})=\mathrm{b} \hat{g}-\mathrm{Cl}(\mathrm{A})$, for any non-empty subset $\{x\}$ of A . Thus A is a minimal $\mathrm{b} \hat{g}-$ open set.
THEOREM 3.17: Let B be a non-empty finite $b \hat{g}$-open set. Then there exists at least one (finite) minimal $\mathrm{bg}-$ open set A such that $\mathrm{A} \subset \mathrm{B}$.
PROOF: Let B be a non-empty $\mathrm{b} \hat{\mathrm{g}}$-open set. Then we have the following two cases:
(1) B is a minimal $b \hat{g}-$ open.
(2) B is not a minimal $b \hat{g}-$ open.

Case (1): If we choose $B=A$, then the theorem is proved.
Case (2): If B is not a minimal $b \hat{g}$-open, then there exists a non-empty (finite) $b \hat{g}$-open set B_{1} such that $B_{1} \subset B$. If B_{1} is minimal $b \hat{g}-$ open, we take $A=B_{1}$. If B_{1} is not a minimal b $\hat{g}-$ open set, then there exists a non-empty(finite) bg $\hat{g}-$ open set B_{2} such that $B_{2} \subset B_{1} \subset B$. We continue this process and have a sequence of $\mathrm{bg}-$ open sets $\ldots \subset \mathrm{Bn} \subset \ldots \mathrm{B}_{2} \subset \mathrm{~B}_{1} \subset \mathrm{~B}$. Since B is finite, this process will end at finite number of steps. That is, for any natural number k, we have a minimal $b \hat{g}-$ open set B_{k} such that $\mathrm{B}_{\mathrm{k}}=\mathrm{A}$. Hence the proof.

COROLLARY 3.18: Let X be a locally finita space and B be a non-empty $b \hat{g}-$ open set. Then there exists at least one (finite) minimal bg $\hat{g}-$ open set A such that $\mathrm{A} \subset \mathrm{B}$.
PROOF: Let X be a locally finite space and B be non-empty $\mathrm{b} \hat{\mathrm{g}}$-open set. Let $x \in \mathrm{~B}$. Since X is finite, we have a finite open set B_{x} such that $x \in \mathrm{~B}_{x}$. Then $\mathrm{B} \cap \mathrm{B}_{x}$ is a non-empty finite bg -open set. By theorem (3.14), there exists at least one (finite) minimal bg $\hat{g}-$ open set A such that $\mathrm{A} \subset \mathrm{B} \cap \mathrm{B}_{x}$. That is $\mathrm{A} \subset \mathrm{B}$. Hence there exists at least one (finite) minimal b $\hat{g}-$ open set A such that $\mathrm{A} \subset \mathrm{B}$.
COROLLARY 3.19: Let B be a finite minimal open set. Then there exists atleast one (finite) minimal $\mathrm{b} \hat{\mathrm{g}}$-open set A such that $\mathrm{A} \subset \mathrm{B}$.
PROOF: Let B be a finite minimal open set. Then B is a non-empty finite bg $\hat{g}-$ open set. By theorem (3.17), there exists at least one (finite) minimal $\mathrm{b} \hat{\mathrm{g}}-$ open set A such that $\mathrm{A} \subset \mathrm{B}$.

© Associated Asia Research Foundation (AARF)

THEOREM 3.20: Let A and A_{λ} be minimal b $\hat{\mathrm{g}}-$ open sets for any $\lambda \in \Gamma$. If $A \subset \bigcup_{\lambda \in \Gamma} A_{\lambda}$ then there exists an element $\lambda \in \Gamma$ such that $A=A_{\lambda}$.
PROOF: Let $A \subset \bigcup_{\lambda \in \Gamma} A_{\lambda}$. Then $A \cap \bigcup_{\lambda \in \Gamma} A_{\lambda}=A$. That is $\bigcup_{\lambda \in \Gamma}\left(A_{\lambda} \cap A\right)=A$. Also by theorem(3.11), $A \cap A_{\lambda}=\Phi$ or $A=A_{\lambda}$ for any $\lambda \in \Gamma$. Hence there exists an element $\lambda \in \Gamma$ such that $\mathrm{A}=A_{\lambda}$.

THEOREM 3.21: Let A and A_{λ} be minimal $b \hat{g}-$ open sets for any $\lambda \in \Gamma$. If $A \neq A_{\lambda}$ for any $\lambda \in \Gamma$, then $\bigcup_{\lambda \in \Gamma} A_{\lambda} \cap \mathrm{A}=\Phi$.
PROOF: Suppose $\bigcup_{\lambda \in \Gamma} A_{\lambda} \cap \mathrm{A} \neq \Phi$. That is $\bigcup_{\lambda \in \Gamma}\left(A_{\lambda} \cap A\right) \neq \Phi$. Then there exists an element $\lambda \in \Gamma$ such that $A \cap A_{\lambda} \neq \Phi$. By theorem(3.11), we have $\mathrm{A}=A_{\lambda}$ which is a contradiction to the fact that $\mathrm{A} \neq A_{\lambda}$ for any $\lambda \in \Gamma$. Hence $\bigcup_{\lambda \in \Gamma} A_{\lambda} \cap \mathrm{A}=\Phi$.

THEOREM 3.22: A proper non-empty subset A of X is maximal $\mathrm{b} \hat{\mathrm{g}}$-closed if and only if $X-\mathrm{A}$ is minimal $\mathrm{b} \hat{\mathrm{g}}$-open.
 exists a non-empty $\mathrm{b} \hat{\mathrm{g}}$-open set B such that $\mathrm{B} \subset X-\mathrm{A}$. That is $\mathrm{A} \subset X-\mathrm{B}$ and $X-\mathrm{B}$ is a $\mathrm{b} \hat{\mathrm{g}}$-closed set. This is a contradiction to the fact that A is a maximal bg-closed set.
Conversely, Let $X-\mathrm{A}$ is a minimal $\mathrm{b} \hat{\mathrm{g}}-$ open set. Suppose A is not a maximal $\mathrm{b} \hat{\mathrm{g}}-\mathrm{closed}$ set. Then there exists a $\mathrm{b} \hat{\mathrm{g}}-\mathrm{closed}$ set $\mathrm{B} \neq \mathrm{A}$ such that $\mathrm{A} \subset \mathrm{B} \neq X$. That is $\Phi \neq X-\mathrm{B} \subset X-\mathrm{A}$ and $X-\mathrm{B}$ is a $\mathrm{b} \hat{\mathrm{g}}-\mathrm{open}$ set. This contradicts the fact that $X-\mathrm{A}$ is a minimal $\mathrm{b} \hat{\mathrm{g}}-\mathrm{open}$ set. Hence A is a maximal bg-closed set.

THEOREM 3.23:

(i) Let A be maximal $\mathrm{b} \hat{\mathrm{g}}$-closed set and B be $\mathrm{a} \hat{\mathrm{g}}-\mathrm{closed}$ set. Then $\mathrm{A} \cup \mathrm{B}=X$ or $\mathrm{B} \subset \mathrm{A}$.
(ii) Let A and B be maximal $\mathrm{b} \hat{\mathrm{g}}-\mathrm{closed}$ sets. Then $\mathrm{A} \cup \mathrm{B}=X$ or $\mathrm{A}=\mathrm{B}$

PROOF:

(i) Let A be a maximal $\mathrm{b} \hat{g}-\mathrm{closed}$ set and B be a $\mathrm{b} \hat{g}$-closed set. If $\mathrm{A} \cup \mathrm{B}=X$, then there is nothing to prove. If $\mathrm{A} \cup \mathrm{B} \neq X$. Then $\mathrm{A} \subset \mathrm{A} \cup \mathrm{B}$ and $\mathrm{A} \cup \mathrm{B}$ is $\mathrm{b} \hat{\mathrm{g}}$-closed. We have $\mathrm{A} \cup \mathrm{B}=\mathrm{A}$, as A is maximal $b \hat{g}-c l o s e d ~ s e t$. Then we have $B \subset A$.
(ii) Let A and B be maximal $\mathrm{b} \hat{-}$-closed sets. If $\mathrm{A} \cup \mathrm{B} \neq X$, then $\mathrm{A} \subset \mathrm{B}$ and $\mathrm{B} \subset \mathrm{A}$ by (i). Therefore $\mathrm{A}=\mathrm{B}$.

© Associated Asia Research Foundation (AARF)

THEOREM 3.24: Let A be a maximal $\mathrm{b} \hat{\mathrm{g}}$-closed set. If $x \in \mathrm{~A}$ then for any $\mathrm{b} \hat{\mathrm{g}}$-closed set B containing $x, \mathrm{~A} \cup \mathrm{~B}=X$ or $\mathrm{B} \subset \mathrm{A}$.
PROOF: Let A be a maximal $\mathrm{b} \hat{\mathrm{g}}$-closed set and $x \in \mathrm{~A}$. Suppose there exists $\mathrm{b} \hat{\mathrm{g}}$-closed set B containing x such that $\mathrm{A} \cup \mathrm{B} \neq X$. Then $\mathrm{A} \subset \mathrm{A} \cup \mathrm{B}$ and $\mathrm{A} \cup \mathrm{B}$ is a $\mathrm{b} \hat{g}$-closed. Since A is a maximal $\mathrm{b} \hat{g}$-closed, we have $\mathrm{A} \cup \mathrm{B}=\mathrm{A}$. Hence $\mathrm{B} \subset \mathrm{A}$.

THEOREM 3.25: Let $A_{\alpha}, A_{\beta}, A_{\gamma}$ be maximal bg $\hat{-}$-closed sets such that $A_{\alpha} \neq A_{\beta}$. If $\left(A_{\alpha} \cap A_{\beta}\right) \subset A_{\gamma}$, then either $A_{\alpha}=A_{\gamma}$ or $A_{\beta}=A_{\gamma}$.

PROOF: Given that $\left(A_{\alpha} \cap A_{\beta}\right) \subset A_{\gamma}$. If $A_{\alpha}=A_{\gamma}$, then there is nothing to prove.
But if $A_{\alpha} \neq A_{\gamma}$ then we have to prove $A_{\beta}=A_{\gamma}$. Now

$$
\begin{aligned}
A_{\beta} \cap A_{\gamma} & =A_{\beta} \cap\left(A_{\gamma} \cap X\right) \\
& =A_{\beta} \cap\left(A_{\gamma} \cap\left(A_{\alpha} \cup A_{\beta}\right)\right) \\
& =A_{\beta} \cap\left(\left(A_{\gamma} \cap A_{\alpha}\right) \cup\left(A_{\gamma} \cap A_{\beta}\right)\right) \\
& =\left(A_{\beta} \cap A_{\gamma} \cap A_{\alpha}\right) \cup\left(A_{\beta} \cap A_{\gamma} \cap A_{\beta}\right) \\
& =\left(A_{\alpha} \cap A_{\beta}\right) \cup\left(A_{\gamma} \cap A_{\beta}\right)\left(\sin c e\left(A_{\alpha} \cap A_{\beta}\right) \subset A_{\gamma}\right) \\
& =\left(A_{\alpha} \cup A_{\gamma}\right) \cap A_{\beta} \\
& =X \cap A_{\beta} \quad \text { (bytheorem 3.23) } \\
& =A_{\beta} \\
\Rightarrow A_{\beta} \subset & A_{\gamma}
\end{aligned}
$$

Since A_{β} and A_{γ} are maximal bg- -closed sets, we have $A_{\beta}=A_{\gamma}$.
THEOREM 3.26: Let A_{α}, A_{β} and A_{γ} be maximal $\mathrm{b} \hat{\mathrm{g}}$-closed sets which are different from each other. Then $\left(A_{\alpha} \cap A_{\beta}\right) \not \subset\left(A_{\alpha} \cap A_{\gamma}\right)$

PROOF: Let $\left(A_{\alpha} \cap A_{\beta}\right) \subset\left(A_{\alpha} \cap A_{\gamma}\right)$.Then $\left(A_{\alpha} \cap A_{\beta}\right) \cup\left(A_{\beta} \cap A_{\gamma}\right) \subset\left(A_{\alpha} \cap A_{\gamma}\right) \cup\left(A_{\beta} \cap A_{\gamma}\right)$, which $\operatorname{implies}\left(A_{\alpha} \cup A_{\gamma}\right) \cap A_{\beta} \subset A_{\gamma} \cap\left(A_{\alpha} \cup A_{\beta}\right) . \quad$ Since \quad by theorem (3.23) $\quad\left(A_{\alpha} \cup A_{\gamma}\right)=X$, and $\left(A_{\alpha} \cup A_{\beta}\right)=X$ which implies $X \cap A_{\beta} \subset A_{\gamma} \cap X$ which gives $A_{\beta} \subset A_{\gamma}$. From the definition of maximal bg-closed set it follows that $A_{\beta}=A_{\gamma}$, which contradicts that A_{α}, A_{β} and A_{γ} are different from each other. Hence $\left(A_{\alpha} \cap A_{\beta}\right) \not \subset\left(A_{\alpha} \cap A_{\gamma}\right)$.

THEOREM 3.27: Let A be a maximal $b \hat{g}-$ closed set and $x \in A$. Then $A=\{B: B$ is a $b \hat{g}-c l o s e d ~ s e t ~$ containing x such that $\mathrm{A} \cup \mathrm{B} \neq X\}$.

© Associated Asia Research Foundation (AARF)

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories.

PROOF: By theorem (3.24) and the fact that A is a $\mathrm{b} \hat{g}$-closed set containing x, we have $\mathrm{A} \subset \cup\{\mathrm{B}$: B is a $\mathrm{b} \hat{\mathrm{g}}$-closed set containing x such that $\mathrm{A} \cup \mathrm{B} \neq X\} \subset \mathrm{A}$. Hence the result.
THEOREM 3.28: Let A be a proper non-empty co-finite $b \hat{g}$-closed set. Then there exists (co-finite) maximal $\mathrm{b} \hat{\mathrm{g}}$-closed set B such that $\mathrm{A} \subset \mathrm{B}$.

PROOF: If A is maximal $b \hat{g}-c l o s e d$, we may take $B=A$. If A is not a maximal $b \hat{g}$-closed set, then there exists (co-finite) b \hat{g}-closed set A_{1} such that $\mathrm{A} \subset \mathrm{A}_{1} \neq X$. If A_{1} is a maximal $\mathrm{b} \hat{g}$-closed set, we may take $B=A_{1}$. If A_{1} is not a maximal bg -closed set, then there exists (co-finite) bg-closed set A_{2} such that $\mathrm{A} \subset \mathrm{A}_{1} \subset \mathrm{~A}_{2} \neq X$. Continuing this process, we have a sequence of $\mathrm{b} \hat{\mathrm{g}}$-closed sets such that $\mathrm{A} \subset \mathrm{A}_{1} \subset \mathrm{~A}_{2} \subset \ldots \subset \mathrm{~A}_{\mathrm{k}} \subset \ldots \neq X$. since A is a co-finite set, this process will end in a finite number of steps. Then finally we get a maximal $b \hat{g}-$ closed set $\mathrm{B}=\mathrm{B}_{\mathrm{n}}$ for some natural number n .

THEOREM 3.29: Let A be a maximal $\mathrm{b} \hat{\mathrm{g}}$-closed set. If $x \in X-\mathrm{A}$ then $X-\mathrm{A} \subset \mathrm{B}$ for any $\mathrm{b} \hat{\mathrm{g}}$-closed set B containing x.

PROOF: Let A be a maximal bĝ-closed set and $x \in X-\mathrm{A}$. Let B be $\mathrm{b} \hat{\mathrm{g}}-\mathrm{closed}$ set containing x. Then by theorem (3.20), either $\mathrm{A} \cup \mathrm{B}=X$ or $\mathrm{B} \subset \mathrm{A}$. But $\mathrm{B} \not \subset \mathrm{A}$, for any $\mathrm{b} \hat{\mathrm{g}}$-closed set B containing x. Therefore $X-\mathrm{A} \subset \mathrm{B}$.
THEOREM 3.30: Let A be a non-empty $b \hat{g}-c l o s e d ~ s e t . ~ T h e n ~ t h e ~ f o l l o w i n g ~ a r e ~ e q u i v a l e n t: ~$
(1) A is a minimal $\mathrm{b} \hat{\mathrm{g}}$-closed set.
(2) A $\subset b \hat{g}-\operatorname{Int}(\mathrm{U})$, for any non-empty subset U of A .
(3) $b \hat{g}-\operatorname{Int}(A)=b \hat{g}-\operatorname{Int}(U)$, for any non-empty subset U of A.

PROOF: $(1) \Rightarrow(2)$: Let A be minimal bĝ-closed set. Let $x \in \mathrm{~A}$ and U be a non-empty subset of A . There exists a bĝ-closed set B containing x such that $\mathrm{A} \subset \mathrm{B}$. Then we have $\mathrm{U} \subset \mathrm{A} \subset \mathrm{B}$ which implies $\mathrm{U} \subset \mathrm{B}$. Now $\mathrm{U}=\mathrm{U} \cap \mathrm{A} \subset \mathrm{U} \cap \mathrm{B}$. Since U is non empty, we have $\mathrm{U} \cap \mathrm{B} \neq \Phi$. Since B is any $\mathrm{bg}-\mathrm{closed}$ set containing $x, x \in \operatorname{bg}-\operatorname{Int}(\mathrm{U})$. That is $x \in \mathrm{~A}$ implies $x \in \operatorname{bg}-\operatorname{Int}(\mathrm{U})$. Hence $\mathrm{A} \subset \mathrm{b} \hat{\mathrm{g}}-\operatorname{Int}(\mathrm{U})$, for any non-empty subset U of A .
(2) \Rightarrow (3): Let U be a non-empty subset of A and $A \subset b \hat{g}-\operatorname{Int}(U)$. Then $b \hat{g}-\operatorname{Int}(U) \subset b \hat{g}-\operatorname{Int}(A)$ and $b \hat{g}-\operatorname{Int}(A) \subset b \hat{g}-\operatorname{Int}(U)$. Hence $b \hat{g}-\operatorname{Int}(A)=b \hat{g}-\operatorname{Int}(U)$, for any non-empty subset U of A.
(3) \Rightarrow (1): Let $b \hat{g}-\operatorname{Int}(A)=b \hat{g}-\operatorname{Int}(U)$, for any non-empty subset U of A. Suppose A is not a minimal bg -closed set. Then there exists a non-empty $\mathrm{b} \hat{g}$-closed set B such that $B \subset A$ and $B \neq A$. Now there exists an element $x \in \mathrm{~A}$ such that $x \notin \mathrm{~B}$, which implies $x \in X-\mathrm{B}$. That is $\operatorname{bg}-\operatorname{Int}(\{x\}) \subset$ $\mathrm{bg}-\operatorname{Int}(X-\mathrm{B})=X-\mathrm{B}$, as $X-\mathrm{B}$ is $\mathrm{b} \hat{g}-$ open in X. It follows that $\mathrm{b} \hat{g}-\operatorname{Int}(\{x\}) \neq \mathrm{b} \hat{g}-\operatorname{Int}(\mathrm{A})$. This is a contradiction to the fact that $\mathrm{b} \hat{\mathrm{g}}-\operatorname{Int}(\{x\})=\mathrm{b} \hat{\mathrm{g}}-\operatorname{Int}(\mathrm{A})$, for any non-empty subset $\{x\}$ of A . Thus A is a minimal bĝ-closed set.

© Associated Asia Research Foundation (AARF)

Similarly we prove all the above properties for Minimal bĝ-closed and Maximal-open sets.

4 bĝ-SEMI-MAXIMAL OPEN SETS AND bĝg-SEMI-MINIMAL CLOSED SETS

In this section we introduce and study the properties of $\mathrm{b} \hat{\mathrm{g}}$-semi-maximal open sets and bĝ-semi-minimal closed sets.

DEFINITION 4.1: A set A in X is said to be $\mathrm{b} \hat{\mathrm{g}}$-semi-maximal open if there exists a maximal bg -open set U such that $\mathrm{U} \subset \mathrm{A} \subset \mathrm{Cl}(\mathrm{U})$. A set A of X is $\mathrm{b} \hat{\mathrm{g}}-$ semi-maximal open if and only if $X-\mathrm{A}$ is $\mathrm{b} \hat{\mathrm{g}}$-semi-minimal closed sets. That is the complement of $\mathrm{b} \hat{\mathrm{g}}$-semi-maximal open sets is called as bĝ-semi-minimal closed sets.

EXAMPLE 4.2: Let $X=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \tau=\{\mathrm{X}, \Phi,\{\mathrm{a}\}\}$.
$\mathrm{b} \hat{\mathrm{g}}-\mathrm{O}(\mathrm{X})=\{\mathrm{X}, \Phi,\{\mathrm{b}\},\{\mathrm{c}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{c}\},\{\mathrm{b}, \mathrm{c}\}\}$. Then $\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{c}\}$ are $\mathrm{b} \hat{\mathrm{g}}-$ semi-maximal open and $\{\mathrm{b}\},\{\mathrm{c}\}$ are $\mathrm{b} \hat{\mathrm{g}}-$ semi-minimal closed.

REMARK 4.3: Every maximal $b \hat{g}$-open (resp. minimal $b \hat{g}$-closed) set is $b \hat{g}$-semi-maximal open (resp.bĝ-semi-minimal closed) set.

THEOREM 4.4: Let A be a bg- -semi-maximal open set of X and $\mathrm{A} \subset \mathrm{B} \subset \mathrm{Cl}(\mathrm{A})$, then B is a bĝ-semi-maximal open set of X.

PROOF: Since A is a $\mathrm{b} \hat{\mathrm{g}}$-semi-maximal open set of X, then there exists a maximal $\mathrm{b} \hat{\mathrm{g}}$-open set U of X such that $\mathrm{U} \subset \mathrm{A} \subset \mathrm{Cl}(\mathrm{U})$. Then $\mathrm{U} \subset \mathrm{A} \subset \mathrm{B} \subset \mathrm{Cl}(\mathrm{A}) \subset \mathrm{Cl}(\mathrm{U})$. That is $\mathrm{U} \subset \mathrm{B} \subset \mathrm{Cl}(\mathrm{U})$. Thus B is a bĝ-semi-maximal open set of X.

THEOREM 4.5: Let A be a bg-semi-minimal closed set of X if and only if there exists a minimal bĝ-closed set B in X such that $\operatorname{Int}(\mathrm{B}) \subset \mathrm{A} \subset \mathrm{B}$.

PROOF: Suppose A is bg-semi-minimal closed set of X. By definition $X-\mathrm{A}$ is $\mathrm{b} \hat{\mathrm{g}}$-semi-maximal open set of X. Then there exists a maximal bg-open set U such that $\mathrm{U} \subset X-\mathrm{A} \subset \mathrm{Cl}(\mathrm{U})$. That is $\operatorname{Int}(X-\mathrm{U})=X-\mathrm{Cl}(\mathrm{U}) \subset \mathrm{A} \subset X-\mathrm{U}$. Let $\mathrm{B}=X-\mathrm{U}$, so that B is a minimal $\mathrm{b} \hat{\mathrm{g}}-\mathrm{closed}$ set in X such that $\operatorname{Int}(\mathrm{B}) \subset \mathrm{A} \subset \mathrm{B}$.

Conversely, Suppose that there exists a minimal bg-closed set B in X such that $\operatorname{Int}(\mathrm{B}) \subset \mathrm{A} \subset \mathrm{B}$. Hence $X-\mathrm{B} \subset X-\mathrm{A} \subset X-\operatorname{Int}(\mathrm{B})=\mathrm{Cl}(X-\mathrm{B})$. That is there exists a maximal $\mathrm{bg}-$ open set $\mathrm{U}=X-\mathrm{B}$ such that $\mathrm{U} \subset X-\mathrm{A} \subset \mathrm{Cl}(\mathrm{U})$. This implies $X-\mathrm{A}$ is $\mathrm{b} \hat{\mathrm{g}}$-semi-maximal open in X. Hence A is $\mathrm{b} \hat{\mathrm{g}}-$ semi minimal closed in X.

THEOREM 4.6: Let B be a $\mathrm{b} \hat{\mathrm{g}}-$ semi-minimal closed set of X if $\operatorname{Int}(\mathrm{B}) \subset \mathrm{A} \subset \mathrm{B}$, then A is also bĝ-semi-minimal closed in X.

© Associated Asia Research Foundation (AARF)

PROOF: Let B be a bg- -semi-minimal closed set of X. Then there exists a minimal bg$-c l o s e d ~ s e t ~ U ~$ such that $\operatorname{Int}(U) \subset B \subset U$ and since $\operatorname{Int}(B) \subset A \subset B$, we have $\operatorname{Int}(U) \subset \operatorname{Int}(B) \subset A \subset B \subset U$.That is $\operatorname{Int}(\mathrm{U}) \subset \mathrm{A} \subset \mathrm{U}$. Therefore A is a $\mathrm{b} \hat{g}-$ semi-minimal closed set in X.

THEOREM 4.7: Let Y be any open subspace of X and $\mathrm{A} \subset \mathrm{Y}$. If A is a bg -semi-maximal open set of X, then A is also a $\mathrm{b} \hat{\mathrm{g}}-$ semi-maximal open set of Y .

PROOF: Since A is $\mathrm{b} \hat{\mathrm{g}}$-semi-maximal open set of X, there exists a maximal $\mathrm{b} \hat{g}-$ open set U such that $\mathrm{U} \subset \mathrm{A} \subset \mathrm{Cl}(\mathrm{U})$. Hence U is subset of Y . Since U is maximal $\mathrm{b} \hat{\mathrm{g}}-$ open in $X, \mathrm{Y} \cap \mathrm{U}=\mathrm{U}$ is maximal $\mathrm{bg}-\mathrm{open}$ in Y and $\mathrm{U}=\mathrm{Y} \cap \mathrm{U} \subset \mathrm{Y} \cap \mathrm{A} \subset \mathrm{Y} \cap \mathrm{Cl}\left((\mathrm{U})\right.$. That is $\mathrm{U} \subset \mathrm{A} \subset \mathrm{Cl}_{\mathrm{Y}}(\mathrm{U})$. Hence A is a bĝ-semi-maximal open set of Y.
THEOREM 4.8: Let A_{i} is a bg-semi-maximal open set of $X_{i}(i=1,2)$, then $A_{1} \times A_{2}$ is a bg -semi-maximal open set of $X_{1} \times X_{2}$.

PROOF: For $i=1,2$ there exists a maximal bg $\hat{g}-$ open set U_{i} such that $U_{i} \subset A_{i} \subset \operatorname{Cl}_{X i}\left(U_{i}\right)$. Therefore $\mathrm{U}_{1} \times \mathrm{U}_{2} \subset \mathrm{~A}_{1} \times \mathrm{A}_{2} \subset \mathrm{Cl}_{\mathrm{X} 1}\left(\mathrm{U}_{1}\right) \times \mathrm{Cl}_{\mathrm{X} 2}\left(\mathrm{U}_{2}\right)=\mathrm{Cl}_{\mathrm{X} 1 \times X 2}\left(\mathrm{U}_{1} \times \mathrm{U}_{2}\right)$. Hence $\mathrm{A}_{1} \times \mathrm{A}_{2}$ is b $\hat{g}-$ semi-maximal open in $X_{1} \times X_{2}$.

5 CONCLUSION

In this paper the concepts of minimal $b \hat{g}$-closed, maximal $b \hat{g}$-closed, minimal $b \hat{g}$-open and maximal $b \hat{g}-$ open sets are introduced and studied. Also we studied the concepts of $b \hat{g}-$-semi-maximal open sets and $b \hat{g}-$-semi-minimal closed sets. Many other new types of sets can be formed from this set which may be very helpful in applied field of science and for further research work.

REFERENCES

[1] D. Andrijevic, On b-open sets, Mat. Vesnik 48(1996), no. 1-2, 59-64.
[2] S.Balasubramanian, Minimal G-open sets and Maximal G-closed sets, Asian Journal of Current Engineering and Maths, 1:3 May-June (2012), 69-73.
[3] S.Balasubramanian and C.Sandhya, Minimal GS-open sets and Maximal GS-closed sets, Asian Journal of Current Engineering and Maths, 1:2 March-April (2012), 34-38.
[4] S.S.Benchalli, Basavaraj, M.Ittanagi and R.S.Wali, On minimal open sets and maps in topological spaces, J.Comp. Math Sci, 2(2), (2011), 208-220.
[5] Fumie Nakaoka and Nobuyuki Oda, Minimal closed sets and maximal closed sets, International Journal of Mathematics and Mathematical Sciences, (2006), 1-8.

© Associated Asia Research Foundation (AARF)

[6] Fumie Nakaoka and Nobuyuki Oda, Some properties of maximal open sets, International Journal of Mathematics and Mathematical Sciences, 21, (2003), 1331-1340.
[7] Fumie Nakaoka and Nobuyuki Oda, Some applications of minimal open sets, International Journal of Mathematics and Mathematical Sciences, 27(8), (2001), 471-476.
[8] M.Lellis Thivagar, Nirmala Rebecca Paul and Saeid Jafari, On New Class of Generalized Closed Sets, Annals of the University of Craiova, Mathematics and Computer Science,38(3),(2011), 84-93.
[9] N Levine, Generalized closed sets in topology Rend.Circ.Mat.Palermo, 19(1970) 89-96.
[10] Miguel Caldas, Saeid Jafari and Seithuti P. Moshokoa, On some new maximal and minimal sets via θ-open sets, Commun.Korean.Math.Soc, 25(4), (2010), 623-628.
[11] R.Subasree and M. Maria singam, "On bĝ-closed sets in topological spaces", International journal of Mathematical Archive, 4(7), 2013, 168-173.
[12] M.K.R.S.Veera Kumar, ĝ-closed sets in topological spaces,Bull.Allah.Math.Soc,18(2003),99-112.

© Associated Asia Research Foundation (AARF)

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories.

