

# **βS-REGULAR SPACES AND βS-NORMAL SPACES IN TOPOLOGY**

**Govindappa Navalagi** Department of Mathematics, KIT Tiptur-572202, Karnataka, India.

Sujata Mookanagoudar

Department of Mathematics, Government First Grade College, Haliyal-581329, Karnataka, India.

# ABSTRACT

The aim of this paper is to introduce and study some forms of weak regular spaces and weak forms of normal spaces, viz.  $\beta$ s- regular spaces, s $\beta$ -regular spaces,  $\beta$ s-normal spaces by using  $\beta$ -closed sets and semiopen sets. Also, we studied some related functions like  $\beta$ gs-closed functions,  $\beta$ gs-continuous functions for preserving these regular spaces and normal spaces.

# Mathematics Subject Classification (2010): 54 A 05, 54 C 08; 54 D 15

Key words and Phrases : semiopen sets,  $\beta$ -closed sets,  $\beta$ -open sets, E.D. spaces , PS-spaces ,

 $\beta$ gs-closedness ,  $\beta$ s-continuity,  $\beta$ -continuity,  $\beta$ -irresoluteness, irresoluteness

# **1.Introduction**

In 1963, N.Levine [16] introduced and studied the concepts of semiopen sets and semi continuity in topological spaces and in 1983, M.E. Abd El–Monsef et al [1] have introduced the concepts of  $\beta$ -open sets and  $\beta$ -continuity in topology. Latter , these  $\beta$ -open sets are recalled as semipreopen sets , which were introduced by D. Andrejevic in [5]. Further these semi open sets and  $\beta$ -open sets (= semipreopen sets) have been studied by various authors in the literature see [2, 4,10,14,17,23]. In 1970 and 1990, respectively Levine [15] and S.P.Arya et al [6] have defined and studied the concept of g-closed sets and gs-closed sets in topology. The aim of this paper is to introduce and study some forms of weak regular spaces and weak forms of normal spaces , viz.  $\beta$ s- regular spaces , s $\beta$ -regular spaces ,  $\beta$ s-normal spaces by using  $\beta$ -closed sets and semiopen sets . Also , we studied some related functions like  $\beta$ gs-closed functions ,  $\beta$ gs-continuous functions for preserving these regular spaces and normal spaces .

### © Associated Asia Research Foundation (AARF)

### 2. Preliminaries

Throughout this paper X,Y will denote topological spaces on which no separation axioms assumed unless explicitly stated. Let  $f : X \to Y$  represent a single valued function. Let A be a subset of X. The closure and interior of A are respectively denoted by Cl(A) and Int(A).

The following definitions and results are useful in the sequel.

Definition 2.1: A subset A of X is called

(i) semiopen (in short , s-open) set [16] if  $A \subset ClInt(A)$  .

(ii) preopen (in short , p-open) set [20] if  $A \subset IntCl(A)$ .

(iii)  $\beta$ -open [1] (=semipreopen [5]) set if A  $\subset$  ClIntCl(A).

The complement of a s-open (resp. p-open ,  $\beta$ -open ) set is called s-closed[7] (resp. p-closed [13] ,  $\beta$ -closed [1] ) set. The family of s-open (resp. p-open ,  $\beta$ -open ) sets of X is denoted by SO(X) (resp. PO(X) ,  $\beta$ O(X)).

**Definition 2.2 :** The intersection of all s-closed (resp.  $\beta$ -closed ) sets containing a subset A of space X is called the s-closure [7] (resp.  $\beta$ -closure[2]) of A and is denoted by sCl(A) (resp.  $\beta$ Cl(A)).

**Definition 2.3 :** The union of all s-open (resp.  $\beta$ -open ) sets which are contained in A is called the s-interior[7] (resp. the  $\beta$ -interior [2]) of A and is denoted by sInt(A) (resp.  $\beta$ Int(A)).

**Definition 2.4 [6]:** A subset A of a space X is called gs-closed if  $sCl(A) \subset U$  whenever  $A \subset U$  and U is open set in X.

**Definition 2.5[ 22]**: A space X is said to be  $\beta$ -regular if for each closed set F and for each  $x \in X$ -F, there exist two disjoint  $\beta$ -open sets U and V such that  $x \in U$  and  $F \subset V$ .

**Definition 2.6 [19 ]**: A space X is said to be s-regular if for each closed set F and for each  $x \in X$ -F, there exist two disjoint s-open sets U and V such that  $x \in U$  and  $F \subset V$ .

**Definition 2.7 [12]**: A space X is said to be **semi**-regular if for each semiclosed set F and for each  $x \in X$ -F, there exist two disjoint **s-open** sets U and V such that  $x \in U$  and  $F \subset V$ .

**Definition 2.8 [18]**: A space X is said to be s-normal if for any pair of disjoint closed subsets A and B of X, there exist disjoint s-open sets U and V such that  $A \subset U$  and  $B \subset V$ .

**Definition 2.9** [11]: A space X is said to be **semi**-normal if for any pair of disjoint semiclosed subsets A and B of X, there exist disjoint **s-open** sets U and V such that  $A \subset U$  and  $B \subset V$ .

**Definition 2.10 [25]**: A space X is said to be submaximal if every dense set of X is open in X (i.e., every preopen set of X is open in X).

#### © Associated Asia Research Foundation (AARF)

**Definition 2.11[14]**: A space X is said to be extremely disconnected (in brief, E.D.,) space if Cl(G) is open set for each open set G of X.

**Definition 2.12[4]**: PS- spaces .A space X is said to be s-regular [] if for each closed set F and for each  $x \in X$ -F, there exist two disjoint s-open sets U and V such that  $x \in U$  and  $F \subset V$ .

**Definition 2.13 [17]:** A function f:  $X \rightarrow Y$  is said to be  $\beta$ -irresolute if  $f^{-1}(V)$  is is  $\beta$ -open set in X for each  $\beta$ -open set V in Y.

**Definition 2.14[8] :** A function f:  $X \rightarrow Y$  is said to be irresolute if  $f^{-1}(V)$  is is s-open set in X for each for each s-open set V in Y.

**Definition 2.15[9] :** A function f:  $X \rightarrow Y$  is said to be presemiopen if f(V) is semiopen set in Y for each for each semiopen set V in X.

**Definition 2.16[22] :** A function f:  $X \rightarrow Y$  is said to be M- $\beta$ -closed if the image of each  $\beta$ -closed set of X is  $\beta$ -closed in Y.

## **3.** Properties of βs-regular spaces

We, define the following.

**Definition 3.1 :** A topological space X is said to be  $\beta$ s-regular if for each  $\beta$ -closed set F of X and each point x in X - F, there exist disjoint s-open sets U and V such that  $x \in U$  and  $F \subset V$ .

Clearly, every  $\beta$ s-regular space is s-regular as well as semi-regular, since every closed set as well as s-closed set is  $\beta$ -closed set.

**Definition 3.2 :** A space X is said to be  $\beta^*$ -regular if for each  $\beta$ -closed set F and for each  $x \in X$ -F, there exist  $\beta$ -open sets U and V such that  $F \subset U$  and  $x \in V$ .

**Theorem 3.3 :** Every  $\beta^*$ -regular space is  $\beta$ -regular.

**Proof**: Let X be  $\beta^*$ -regular space and F be a closed set not containing x implies F be a  $\beta$ closed set not containing x. As X is  $\beta^*$ -regular space, there exist disjoint  $\beta$ -open sets U and V
such that  $x \in V$  and  $F \subset U$ . Therefore X is  $\beta$ -regular.

**Lemma 3.4:** If A is subset of X and  $B \in \beta O(X)$  such that  $A \cap B = \emptyset$  then  $\beta Cl(A) \cap B = \emptyset$ .

**Proof**: Let us assume that  $\beta Cl(A) \cap B \neq \emptyset$  implies there exists x such that  $x \in \beta Cl(A)$  and  $x \in B$ . Now  $x \in \beta Cl(A) \Rightarrow A \cap U \neq \emptyset$  for each  $\beta$ -open set U containing x which is contradiction to hypothesis  $A \cap B = \emptyset$  for  $B \in \beta O(X,x)$ . Hence  $\beta Cl(A) \cap B = \emptyset$ .

**Lemma 3.5 :** Every  $\beta$ s-regular space is  $\beta^*$ -regular space .

**Proof**: Let X be  $\beta$ s-regular space and F be a  $\beta$ -closed set not containing x. As X is  $\beta$ s-regular space, there exist disjoint s-open sets U and V such that  $x \in V$  and  $F \subset U$ . But, every s-open set is  $\beta$ -open set and thus X is  $\beta$ \*-regular.

### © Associated Asia Research Foundation (AARF)

Converse of Lemma-3.5 is not true . For example,

**Example 3.6 :** Let  $X = \{a, b, c\}, \tau = \{X, \emptyset, \{a\}, \{b, c\}\}$ 

 $\beta O(X) = \{ X, \emptyset, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\} \}$ 

 $SO(X) = \{ X, \emptyset, \{a\}, \{b,c\} \}$ 

Clearly X is  $\beta^*$ -regular space but not  $\beta$ s-regular. Since for  $\beta$ -closed set  $\{a,b\}$  and  $c \notin \{a,b\}$  there do not exist disjoint s-open sets U and V such that  $c \in U$  and  $F \subset V$ .

Theorem 3.7: For a topological space X the following statements are equivalent ;

- (a) X is  $\beta$ s-regular
- (b) For each  $x \in X$  and for each  $\beta$ -open set U containing x there exists a s-open set V containing x such that  $x \in V \subset sCl(V) \subset U$ .
- (c) For each  $\beta$ -closed set F of X,  $\cap \{sCl(V)/F \subset V \text{ and } V \in SO(X)\} = F$
- (d) For each nonempty subset A of X and each  $U \in \beta O(X)$  if  $A \cap U \neq \emptyset$  then there exists  $V \in SO(X)$  such that  $A \cap V \neq \emptyset$  and  $sCl(V) \subset U$
- (e) For each nonempty subset A of X and each  $F \in \beta F(X)$  if  $A \cap F = \emptyset$  then there exists  $V, W \in SO(X)$  such that  $A \cap V \neq \emptyset$ ,  $F \subset W$  and  $V \cap W = \emptyset$ .

**Proof :** (a)  $\Rightarrow$ (b) Let X be  $\beta$ s- regular space. Let  $x \in X$  and U be  $\beta$ -open set containing x implies X - U is  $\beta$ -closed such that  $x \notin X$ - U. Therefore by (a) there exists two s-open sets V and W such that  $x \in V$  and  $X - U \subset W \Rightarrow X - W \subset U$ . Since  $V \cap W = \emptyset \Rightarrow sCl(V) \cap W = \emptyset \Rightarrow sCl(V) \subset X$ - W  $\subset$  U. Therefore,  $x \in V \subset sCl(V) \subset U$ .

(b)  $\Rightarrow$  (c) Let F be a  $\beta$ -closed subset of X and  $x \notin F$ , then X - F is  $\beta$ -open set containing x. By (b) there exists s-open set U such that  $x \in U \subset sCl(U) \subset X$ -F implies  $F \subset X$ -sCl(U)  $\subset X$ -U i.e F  $\subset V \subset X$ -U where V = X-sCl(U)  $\in$ SO(X) and  $x \notin V$  that implies  $x \notin sCl(V)$  implies  $x \notin \cap \{ sCl(V) / F \subset V \in SO(X) \}$ . Hence,  $\cap \{ sCl(V) / F \subset V \in SO(X) \} = F$ 

(c)  $\Rightarrow$  (d) A be a subset of X and U  $\in \beta O(X)$  such that A  $\cap U \neq \emptyset$ .

⇒ there exists  $x_0 \in X$  such that.  $x_0 \in A \cap U$ . Therefore X-U is  $\beta$ -closed set not containing  $x_0 \Rightarrow x_0 \notin \beta Cl(X-U)$ . By (c) , there exists  $W \in SO(X)$  such that  $X-U \subset W \Rightarrow x_0 \notin sCl(W)$ . Put V = X-sCl(W) , then V is s-open set containing  $x_0 \Rightarrow A \cap V \neq \emptyset$  and  $sCl(V) \subset sCl(X-sCl(W)) \subset sCl(X-W)$ . Therefore ,  $sCl(V) \subset sCl(X-W) \subset U$ .

(d)  $\Rightarrow$  (e) Let A be a nonempty subset of X and F be  $\beta$ -closed set such that  $A \cap F = \emptyset$ . Then X-F is  $\beta$ -open in X and  $A \cap (X-F) \neq \emptyset$ . Therefore by (d), there exist  $V \in SO(X)$  such that  $A \cap V \neq \emptyset$  and  $sCl(V) \subset X - F$ . Put W = X- sCl(V) then  $W \in SO(X)$  such that  $F \subset W$  and  $W \cap V = \emptyset$ .

(f)  $\Rightarrow$  (a) Let  $x \in X$  be arbitrary and F be  $\beta$ -closed set not containing x. Let  $A = X \setminus F$  be a nonempty  $\beta$ -open set containing x then by (e) ,there exist disjoint s-open sets V and W such that  $F \subset W$  and  $A \cap V \neq \emptyset \Rightarrow x \in V$ . Thus X is a  $\beta$ s-regular.

#### © Associated Asia Research Foundation (AARF)

Theorem 3.8 : In a topological space X following statements are equivalent;

- (a) X is  $\beta$ s-regular
- (b) for each  $\beta\text{-}open$  set U of X containing x there exists s-open set V such that  $x\in V\subset sCl(V)\subset U$

**Proof :** (a)  $\Rightarrow$  (b) Let  $x \in X$  and U be  $\beta$ -open set of X containing  $x \Rightarrow X - U$  is  $\beta$ -closed set not containing x. As X is  $\beta$ s- regular , there exist disjoint s-open sets V and W such that  $x \in V$  and X-U  $\subset$  W  $\Rightarrow$  X-W  $\subset$  U. As  $V \cap W = \emptyset \Rightarrow$  sCl (V)  $\cap W = \emptyset \Rightarrow$  sCl(V)  $\subset$  X-W  $\subset$  U. Hence  $x \in V \subset$  sCl(V)  $\subset$  U.

(b)  $\Rightarrow$  (a) Let for each  $x \in X$ , F be  $\beta$ -closed set not containing x, therefore X-F is  $\beta$ -open set containing x hence from (b) there exists s-open set V such that  $x \in V \subset sCl(V) \subset X$ -F. Let U = X - sCl(V) then U is s-open set such that  $F \subset U$ ,  $x \in V$  and  $U \cap V = \emptyset$ . Thus there exists disjoint s-open sets U and V such that  $x \in V$  and  $F \subset U$ . Therefore X is  $\beta$ s- regular.

We, define the following.

**Definition 3.9:** A space X is said to be strongly  $\beta^*$ -regular if for each  $\beta$ -closed set F and for each  $x \in X$ -F, there exists disjoint open sets U and V such that  $F \subset U$  and  $x \in V$ .

**Theorem 3.10:** Every strongly  $\beta^*$ - regular space is  $\beta^*$ -regular space.

**Proof :** Let X be strongly  $\beta^*$ -regular space and F be any  $\beta$ -closed set and  $x \notin F$ . Then there exist disjoint open sets U and V such that  $x \in U$  and  $F \subset V$ . Since every open set is  $\beta$ -open and hence U and V are  $\beta$ - open sets such that  $x \in U$  and  $F \subset V$ . This shows that X is  $\beta^*$ -regular.

Converse of the theorem 3.10 and other statements are not true in general. For,

**Example 3.11 :** Let  $X = \{a,b,c\}, \tau = \{X, \emptyset, \{a\}, \{b\}, \{a,b\}\}$ 

 $\beta O(X) = \{ X, \emptyset, \{a\}, \{b\}, \{a,b\}, \{a,c\}, \{b,c\} \}$ 

Clearly X is  $\beta^*$ -regular but not strongly  $\beta^*$ -regular.

Theorem 3.12 : For a topological space X the following statements are equivalent ;

- (a) X is strongly  $\beta^*$ -regular
- (b) For each  $x \in X$  and for each  $\beta$ -open set U of X containing a point x, there exists an open set V such that  $x \in V \subset Cl(V) \subset U$ .
- (c) For each  $\beta$ -closed set F of X,  $\cap \{Cl(V)/F \subset V \in \tau\} = F$ .
- (d) For each nonempty subset A of X and each  $U \in \beta O(X)$  if  $A \cap U \neq \emptyset$  then there exists open set V such that  $A \cap V \neq \emptyset$  and  $Cl(V) \subset U$ .
- (e) For each nonempty subset A of X and each closed set F of X such that  $A \cap F = \emptyset$ , there exit,  $V, W \in \beta O(X)$ , such that  $A \cap V \neq \emptyset$ ,  $F \subset W$  and  $V \cap W = \emptyset$ .

The routine proof of the theorem is omitted.

#### © Associated Asia Research Foundation (AARF)

Next, we prove some preservation theorems in the following.

**Theorem 3.13 :** If  $f: X \to Y$  is a pre-semiopen,  $\beta$ -irresolute bijection and X is  $\beta$ s-regular space, then Y is  $\beta$ s-regular.

**Proof**: Let F be any  $\beta$ -closed subset of Y and  $y \in Y$  with  $y \notin F$ . Since f is  $\beta$ -irresolute,  $f^1(F)$  is  $\beta$ -closed set in X. Again, f is bijective, let f(x) = y, then  $x \notin f^1(F)$ .Since X is  $\beta$ s-regular, there exist disjoint s-open sets U and V such that  $x \in U$  and  $f^1(F) \subset V$ . Since f is, presemiopen bijection, we have  $y \in f(U)$  and  $F \subset f(V)$  and  $f(U) \cap f(V) = f(U \cap V) = \emptyset$ . Hence, Y is  $\beta$ s-regular space.

We, define the following.

**Definition 3.14 :** A function  $f: X \to Y$  is said to be always- $\beta$ -closed if the image of each  $\beta$ -closed subset of X is  $\beta$ -closed set in Y.

Now, we prove the following.

**Theorem 3.15 :** If  $f: X \to Y$  is an always  $\beta$ -closed, irresolute injection and Y is  $\beta$ s-regular space, then X is  $\beta$ s-regular.

Proof : Let F be any  $\beta$ -closed set of X and  $x \notin F$ . Since f is an always  $\beta$ -closed injection, f(F) is  $\beta$ -closed set in Y and  $f(x) \notin f(F)$ . Since Y is  $\beta$ s-regular space and so there exist disjoint sopen sets U and V in Y such that  $f(x) \in U$  and  $f(F) \subset V$ . By hypothesis,  $f^{-1}(U)$  and  $f^{-1}(V)$  are s-open sets in X with  $x \in f^{-1}(U)$ ,  $F \subset f^{-1}(V)$  and  $f^{-1}(U) \cap f^{-1}(V) = \emptyset$ . Hence, X is  $\beta$ s-regular space.

We, define the following.

**Definition 3.16 :** A function  $f : X \to Y$  is said to be  $\beta$ s-continuous if the inverse image of each  $\beta$ -open set of Y is s-open set in X.

Next, we give the following.

**Theorem 3.17 :** If  $f: X \to Y$  is an always  $\beta$ -closed,  $\beta$ s-continuous injection and Y is  $\beta$ -regular space, then X is  $\beta$ s-regular.

### **4.**βs-normal spaces.

We, define the following.

#### © Associated Asia Research Foundation (AARF)

**Definition 4.1 :** A function  $f : X \to Y$  is said to be  $\beta$ gs-continuous if for each  $\beta$ -closed set F of Y,  $f^1(F)$  is gs-closed set in X.

It is obvious that a function  $f: X \to Y$  is  $\beta$ gs-continuous if and only if  $f^{-1}(V)$  is gs-open in X for each  $\beta$ -open set V of Y.

**Definition 4.2:** A function  $f: X \rightarrow Y$  is said to be  $\beta$ gs-closed if for each  $\beta$ -closed set F of

X, f(F) is gs-closed set in Y.

We, recall the following .

**Definition 4.3[ 23] :** A function  $f: X \rightarrow Y$  is said to be :

(i)pre-gs-continuous if the inverse image of each s-closed set F of Y is gs-closed in X.

(ii)pre-gs-closed if the image of each s-closed set of X is gs-closed in Y.

Clearly, (i) every pre- $\beta$ gs-continuous function is pre-gs-continuous,

(ii) every pre- $\beta gs$ -closed function is pre-gs-closed , since in both cases every s-closed set is  $\beta$ -closed set.

We ,prove the following.

**Theorem 4.4 :** A surjective function  $f: X \rightarrow Y$  is  $\beta$ gs-closed if and only if for each subset B of Y and each  $\beta$ -open set U of X containing  $f^{1}(B)$ , there exists a gs-open set V of Y such that  $B \subset V$  and  $f^{1}(V) \subset U$ .

**Proof :** Suppose f is  $\beta$ gs-closed function. Let B be any subset of Y and U be any  $\beta$ -open set in X containing  $f^{-1}(B)$ . Put V = Y - f(X-U). Then, V is gs-open set in Y such that  $B \subset V$  and  $f^{-1}(V) \subset U$ .

Conversely, let F be any  $\beta$ -closed set of X. Put B = Y - f(F), then we have  $f^{-1}(B) \subset X - F$  and X-F is  $\beta$ -open in X. There exists a gs-open set V of Y such that  $B = Y - f(F) \subset V$  and  $f^{-1}(V) \subset X - F$ . Therefore, we obtain that f(F) = Y - V and hence f(F) is gs-closed set in Y. This shows that f is  $\beta$ gs-closed function.

We, define the following.

**Definition 4.5 :** A function  $f : X \rightarrow Y$  is said to be strongly  $\beta$ -closed if the image of each  $\beta$ -closed set of X is closed in Y.

**Definition 4.5 :** A function  $f: X \rightarrow Y$  is said to be always gs-closed if the image of each gsclosed set of X is gs-closed in Y.

**Theorem 4.6:** Let  $f: X \rightarrow Y$  and  $g: Y \rightarrow Z$  be two functions. Then the composition function  $gof: X \rightarrow Z$  is  $\beta gs$ -closed if f and g satisfy one of the following conditions:

#### © Associated Asia Research Foundation (AARF)

- (i) f is  $\beta$ gs-closed and g is always gs-closed.
- (ii) f is strongly  $\beta$ -closed and g is gs-closed.

**Proof :** (i)Let H be any  $\beta$ -closed set in X and f is  $\beta$ gs-closed, then f(H) is gs-closed set in Y.Again, g is always gs-closed function and f(H) is gs-closed set in Y, then gof (H) is gs-closed set in Z. This shows that gof is  $\beta$ gs-closed function.

(ii)Let F be any  $\beta$ -closed set in X and f is strongly  $\beta$ -closed function, then f(F) is closed set in Y. Again, g is gs-closed function and f(F) is closed set in Y, then gof (F) is gs-closed set in Z. This shows that gof is  $\beta$ gs-closed function.

We, define the following.

**Definition 4.7 :** A function  $f: X \rightarrow Y$  is said to be gs $\beta$ -closed if for each gs-closed set F of

X, f(F) is  $\beta$ -closed set in Y.

**Theorem 4.8 :** Let  $f: X \rightarrow Y$  and  $g: Y \rightarrow Z$  be two functions . Then ,

- (i) if f is  $\beta$ -losed and g is  $\beta$ gs-closed, then gof is gs-closed.
- (ii) if f is  $\beta$ gs-closed and g is strongly gs- closed, then gof is strongly  $\beta$ -closed.
- (iii) if f is M- $\beta$ -closed and g is  $\beta$ gs-closed, then gof is  $\beta$ gs-closed.
- (iv) if f is alays gs-closed and g is  $gs\beta$ -closed, then gof is  $gs\beta$ -closed.

**Proof :** (i). Let H be a closed set in X, then f(H) be  $\beta$ -closed set in Y since f is  $\beta$ -closed function. Again, g is  $\beta$ gs-closed and f(H) is  $\beta$ -closed set in Y then g(f(H))=gof(H) is gs-closed set in Z. Thus, gof is gs-closed function.

(ii)Let F be any  $\beta$ -closed set in X and f is  $\beta$ gs-closed function, then f(F) is gs-closed set in Y. Again, g is strongly gs-closed and f(F) is gs-closed set in Y, then gof(F) is closed set in Z. This shows that gof is strongly  $\beta$ -closed function.

(iii)Let H be any  $\beta$ -closed set in X and f is M- $\beta$ -closed function then f(H) is  $\beta$ -closed set in Y. Again, g is  $\beta$ gs-closed function and f(H) is  $\beta$ -closed set in Y, then gof (H) is gs-closed set in Z. Therefore, gof is  $\beta$ gs-closed function.

(iv)Let H be any gs-closed set in X and f is always gs-closed function , then f(H) be gs-closed set in Y . Again , g is gs $\beta$ -closed function and f(H) is gs-closed set in Y, then gof (H) is  $\beta$ -closed set in Z. This shows that gof is gs $\beta$ -closed function.

**Theorem 4.9 :** Let  $f : X \rightarrow Y$  and  $g : Y \rightarrow Z$  be two functions and let the composition function  $gof : X \rightarrow Z$  is  $\beta gs$ -closed. Then, the following hold :

- (i) if f is  $\beta$ -irresolute surjection, then g is  $\beta$ gs-closed.
- (ii) if g is gs-irresolute injection, then f is  $\beta$ gs-closed.

**Proof**: (i) Let F be a  $\beta$ -closed set in Y. Since f is  $\beta$ -irresolute surjective,  $f^{-1}(F)$  is  $\beta$ -closed set in X and  $(gof)(f^{-1}(B)) = g(F)$  is gs-closed set in Z. This shows that g is  $\beta$ gs-closed function.

### © Associated Asia Research Foundation (AARF)

(ii)Let H be a  $\beta$ -closed set in X. Then, gof (H) is gs-closed set in Z. Again, g is gs-irresolute injective,  $g^{-1}(gof(H)) = f(H)$  is gs-closed set in Y. This shows that f is  $\beta$ gs-closed function.

We, define the following.

**Definition 4.10:** A space X is said to be  $\beta$ s-normal if for any pair of disjoint  $\beta$ -closed sets A and B of X ,there exist disjoint s-open sets U and V such that  $A \subset U$  and  $B \subset V$ .

Clearly, every  $\beta$ s-normal space is s-normal as well as semi-normal, since every closed set as well as s-closed set is  $\beta$ -closed set.

**Definition 4.11 :** A space X is said to be  $\beta^*$ -normal if for any pair of disjoint  $\beta$ -closed sets A and B of X ,there exist disjoint open sets U and V such that  $A \subset U$  and  $B \subset V$ .

Clearly, every  $\beta^*$ -normal space is  $\beta$ s-normal space.

We, recall the following.

**Lemma 4.12 [6] :** A subset A of a space X is gs-open iff  $F \subset sInt(A)$  whenever  $F \subset A$  and F is closed set in X.

Lemma 4.13 [3] : If X is submaximal and E.D. space , then every  $\beta$ -open set in X is open set.

We, characterize the  $\beta$ s-normal spaces in the following.

Theorem 4.14 : The following statements are equivalent for a submaximal and E.D., space X :

- (i) X is  $\beta$ s-normal space,
- (ii) For any pair of disjoint  $\beta$ -closed sets A, B of X, there exist disjoint gs-open sets U, V such that  $A \subset U$  and  $B \subset V$ ,
- (iii) For any  $\beta$ -closed set A and any  $\beta$ -open set V containing A, there exists a gs-open set U such that  $A \subset U \subset sCl(U) \subset V$ .

Proof : (i)  $\rightarrow$  (ii) . Obvious , since every s-open set is gs-open set.

(ii)  $\rightarrow$  (iii) . Let A be any  $\beta$ -closed set and V be any  $\beta$ -open set containing A. Since A and X-V are disjoint  $\beta$ -closed sets of X, there exist gs-open sets U and W of X such that  $A \subset U$  and X-V  $\subset$  W and  $U \cap W = \Box$ . By Lemmas–4.12 and 4.13, we have  $X - V \subset sInt(W)$ . Since  $U \cap sInt(W) = \Box$ , we have  $sCl(U) \cap sInt(W) = \Box$  and hence  $sCl(U) \subset X$ -sInt(W)  $\subset V$ . Thus, we obtain that  $A \subset U \subset sCl(U) \subset V$ .

(iii)  $\rightarrow$  (i). Let A and B be any disjoint  $\beta$ -closed sets of X. Since X-B is  $\beta$ -open aet containing A, there exists a gs-open set G such that  $A \subset G \subset sCl(G) \subset X$ -B. Then by Lemmas-4.12 and 13,  $A \subset sInt(G)$ . Put U = sInt (G) and V = x-sCl(G). Then, U and V are disjoint s-open sets such that  $A \subset U$  and  $B \subset V$ . Therefore, X is  $\beta$ s-normal space.

**Theorem 4.15 :** If  $f : X \to Y$  is a  $\beta$ -irresolute,  $\beta$ gs-closed surjection and X is  $\beta$ s-normal, then Y is  $\beta$ s-normal space.

#### © Associated Asia Research Foundation (AARF)

**Proof**: Let A and B be any disjoint  $\beta$ -closed sets of Y. Then,  $f^1(A)$  and  $f^1(B)$  are disjoint  $\beta$ -closed sets of X since f is  $\beta$ -irresolute function. Since X is  $\beta$ s-normal, there exist disjoint s-open sets U and V in X such that  $f^1(A) \subset U$  and  $f^1(B) \subset V$ . By Th.4.4, there exist gs-open sets G and H of Y such that  $A \subset G$ ,  $B \subset H$ ,  $f^1(G) \subset U$  and  $f^1(H) \subset V$ . Then, we have

 $f^{1}(G) \cap f^{1}(H) = \Box$  and hence  $G \cap H = \Box$ . It follows from Th.4.14 that space Y is  $\beta$ s-normal.

# References

- M.E.Abd El-Monsef, S.N.El-Deeb and R.A.Mahamoud, β-open sets and β-continuous mappings, Bull.Fac.Sci. Assiut Univ., 12(1983),77-90.
- [2] M.E.Abd El-Monsef, R.A.Mahamoud and E.R. Lashin, β-closure and β-interior,
   J.Fac.Ed. Ain Shams Univ., 10(1986),235-245.
- [3] M.E. Abd El-Mosef and A.M.Kozae, On extremally dixconnectedness, ro-equivalence and properties of some maximal topologies, 4<sup>th</sup> Conf.Oper.Res.Math.Methods, (Alex.Univ., 1988).
- [4] T.Aho and T.Nieminen, Spaces in which preopen sets are semiopen, Ricerche Mat., (1994) (to appear).
- [5] D.Andrijevic, Semi-preopen sets, Mat. Vesnik, 38(1986), 24 32.
- [6] S.P.Arya and T.M.Nour, Characterizations of s-normal spaces, Indian J.Pure Appl.Math., 21(8) ,(1990) , 717-719.
- [7] S.G.Crossley and S.K.Hildebrand, Semiclosure, Texas J.Sci., 22 (1971), 99-112.
- [8] S.G.Crossley and S.K.Hildebrand, Semiclosed sets and semicontinuity in topological spaces, Texas J.Sci., 22(1971), 125-126.
- [9] S.G.Crossley and S.K.Hildebrand, Semitopological properties, Funda .Math., 74 (1972), 233-254.
- [10] J.Dontchev, The characterizations of spaces and maps via semipreopen sets, Indian J.Pure And Appl.Math., 25(9)(1994), 939-947.
- [11] C.Dorcett, Semi-normal spaces, Kyungpook Math. J., 25(1985),173-180.
- [12] C.Dorsett, Semi-regular spaces, Soochow J. Math., 8 (1982), 45-53.
- [13] S. N. El- Deeb, I. A. Hasanien, A.S. Mashhour and T. Noiri, On p-regular spaces,

#### © Associated Asia Research Foundation (AARF)

Bull. Math. Soc. Sci. Math. R. S. R. 27 (75) (1983), 311-315.

- [14] L.Gillman and M.Jerison, Rings of continuous functions, Univ.Series of Higher Math., Van Nostrand, Princeton, New York, (1960).
- [15] N.Levine, Generalized closed sets in topology, Rend.Circ.Mat. Palermo, (2) 19 (1970), 89-96.
- [16] N.Levine, Semi-open sets and semi continuity in topological spaces, Amer.Math. Monthly, 70 (1963), 36-41.
- [17] R.A.Mahamoud and M.E.Abd El-Monsef, β-irresolute and β- topological invariant,
   Proc. Pakistan Acad. Sci., 27(1990), 285–296.
- [18] S.N.Maheshwari and R.Prasad, On s-normal spaces, Bull.Math.Soc.Sci.R.S.Roumanie, 22(70) ,(1978),27-29.
- [19] S.N.Maheshwari and R.Prasad, On s-regular spaces, Glasnik Mat., 30(10) (1975), 347-350.
- [20] A.S.Mashhour, M.E.Abd El-Monsef and S.N.El-Deeb, On Precontinuous and Weak Precontinuous Mappings. Proc. Math. Phys.Soc. Egypt, 53(1982), 47-53.
- [21] G.B.Navalagi, On semipre-continuous functions and properties of generalized semi-preclosed sets in topology, I J M S, 29(2) (2002), 85-98.
- [22] T.Noiri , Weak and strong forms of  $\beta$  irresolute functions., Acta.Math.Hungar. , 99(4) (2003), 315-328.
- [23] T.Noiri, On s-normal spaces and pre-gs-closed functions, Acta Math., Hungar.80(1-2) (1998), 105-113.
- [24] J.H.Park and Y.B.Park, On sp-regular spaces, J.Indian Acad.Math. 17(1995) ,No.2 , 212-218.
- [25] I.L.Reilly and M.K.Vamanmurthy, On some questions concerning preopen sets, Kyungpook Math.J., 30(1990), 87-93.

### © Associated Asia Research Foundation (AARF)