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ABSTRACT 

SOCPs are non-linear convex optimizations. Linear program (LP), quadratic program (QP) and 

quadratically constrained quadratic programs (QCQP) can all be formulating as SOCP problems. 

This paper tried to discuss how to formulate such problem as SOCPs. There are many variants of 

interior-point methods such as projective or potential reduction, affine, path- following and 

logarithmic barrier methods. Among these methods, we focused on logarithmic barrier methods 

for solving SOCP. 

Key Words: Second Order Cone Programming (SOCP), Logarithmic Barrier Method, 

combinatorial optimization. Interior-point (IP), and Convex Optimization 

1. BACKGROUND OF STUDY 

Second-order cone programming (SOCP) problems are convex optimization problems in 

which a linear function is minimized over the intersection of an affine linear manifold with the 

Cartesian product of second-order (Lorentz) cones. Linear programs, convex quadratic 

programs and quadratically constrained convex quadratic programs can all be formulated as 

SOCP problems, as can many other problems that do not fall into these three categories. These 

SOCP problems model applications from a broad range of fields from engineering, control and 

finance to robust optimization and combinatorialoptimization. 

SOCP is a special class of semi-definite programming. Semi-definite programming (SDP) is 

the optimization problem over the intersection of an affine set and the cone of positive semi- 

definite matrices. Therefore, SOCP is less general than semi-definite programming.SOCP falls 

between linear programming (LP) and quadratic programming (QP). Like LP and QP 

problems, SOCP problems can be solved by interior point methods. The computational effort 

per iteration required by these methods to solve SOCP problems is greater than that required to 
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solve LP and QP problems but less than that required to solve SDP’s of similar size and 

structure. The set of feasible solutions for SOCP problem is not polyhedral as it is for LP and 

QP problems.Interior-point (IP) has dominated the research on convex optimization from the 

early 1990s until recently. They are popular because they reach a high accuracy in a small 

number of iterations, almost independent of problem size, type and data. Each iteration 

requires the solution of a set of linear equations with fixed dimensions and known structure. 

As a result, the time needed to solve different instances of a given problem family can be 

estimated quite accurately. 

IP methods depend on only a small number of algorithm parameters, which can be set to 

values that work well for a wide range of data, and do not need to be tuned for a specific 

problem.  The  key  to  efficiency  of  an  IP   solver  is  the  set  of  linear  equations  solved   

in each iteration. These equations are sometimes called Newton equations, because they can be 

interpreted as a linearization of the nonlinear equations that characterize the central path, or Ka 

rush-Kuhn-Tucker (KKT) equations, because they can be interpreted as optimality (or KKT) 

conditions of an equality-constrained quadratic optimization problem. The cost of solving the 

Newton equations determines the size of the problems that can be solved by an IP method 

One of the advantages of IP methods is that they can easily be extended from the LP case   to 

other optimization problems such as second-order cone programming and semi-definite 

programming. In this seminar the interior-point frame work will be introduced by applying a 

modification of Newton’s method on the KKT conditions and explains how we can use 

logarithmic barrier method to approximate the optimal solutions of theproblem. 

 

2. MATHEMATICALPRELIMINARIES 

In this chapter we deal with some basic definitions and theorems that are required for the 

discussion of the main body of the journal 

Definition 2.1  

The convex optimization problem in standard form: 

Minimize𝑓0(𝑥) (2.1) 

Subject to: 𝑓𝑗  𝑥 ≤ 0, 𝑗= 1,… ,𝑛 

𝑖 𝑥 = 𝑎𝑖
𝑇𝑥-𝑏𝑖 = 0, 𝑖 = 1,… ,𝑞,where x ∈ R 

n 
is called a convex optimization problem if: 

(i) The objective function 𝑓0is convex, 

(ii) Thefunctionsdefiningtheinequalityconstraints,𝑓𝑗 , 𝑗 = 1,… ,𝑛 areconvex, 
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(iii) the functions defining the equality constraints, hi= 0 i= 1, … , q are affine. 

Definition 2.2  

Lagrangian function L:𝑅𝑛×𝑅𝑚×𝑅𝑞→𝑅associated with equation   (2.1) 

𝐿 𝑥,𝑦, 𝑠 = 𝑓0 𝑥 + 𝑦𝑗𝑓𝑗
𝑚
𝑗=1  𝑥 +    𝑠𝑖𝑖(𝑥)

𝑞
𝑖=1  (2.2) 

where 𝑦𝑗 and 𝑠𝑖are Lagrangian multipliers. 

I. KARUSH-KUHN-TUCKER CONDITIONS 

Considerthe convexoptimization problem (2.1), thefunctions: 

𝑓0: 𝑆 → 𝑅, 𝑓𝑗 : 𝑆 → 𝑅𝑚 and𝑖: 𝑆 → 𝑞are all differentiable on some open set 𝑆 → 𝑅𝑛 . The Karush-

Kuhn-Tucker conditions become: 

∇𝑓0 𝑥 +   𝑦𝑗∇𝑓𝑗  𝑥  +  𝑠𝑖∇𝑖(𝑥)) = 0
𝑞
𝑖=1

𝑚
𝑗=1                                                            (2.3)   

For  𝑦𝑗𝑓𝑗  𝑥 = 0, 𝑗 = 1,… ,𝑚 
  𝑓𝑗 ≤ 0, 𝑗 = 1,… ,𝑚b  

  𝑖 = 0, 𝑖 = 1,… , 𝑞 b  

  𝑦𝑗 ≥ 0  , 𝑗 = 1,… ,𝑚 

where 𝑦𝑗and 𝑠𝑖  denote the Lagrange multipliers associated with the constraints 𝑓𝑗 ≤  0and 

𝑖 =  0 respectively. 

 
Definition2.3  

The Jacobean matrix is the matrix of all first-order of partial derivatives of a vector-valued 

function. Suppose𝑓:𝑅𝑛 → 𝑅𝑚 is a function which takes as input thevector 𝑥 ∈ 𝑅𝑛and 

products as output the vector𝑓(𝑥) ∈ 𝑅𝑚 .Then, the Jacobian matrix 𝐽 off is a 𝑛× 𝑛matrix 

usually defined and arranged as follows: 

𝐽 =
𝑑𝑓

𝑑𝑥
=  

𝜕𝑓

𝜕𝑥1
,… ,

𝜕𝑓

𝜕𝑥𝑛
 =

 
 
 
 
 
 

 .

𝜕𝑓1

𝜕𝑥1
     … .           

𝜕𝑓1

𝜕𝑥𝑛
.               .              .

.

.
𝜕𝑓𝑛

𝜕𝑥1
    …                 

𝜕𝑓𝑛

𝜕𝑥𝑛

.

 
 
 
 
 
 

         (2.4) 

Definition2.4: 

The Hessian matrix is a square matrix of second–order partial derivatives of a scalar-

valued function. Specifically, suppose𝑓:𝑅𝑛 → 𝑅 is a function taking as input a vector 

𝑥 ∈ 𝑅𝑛 and out putting a scalar𝑓(𝑥) ∈ 𝑅. If all second partial derivatives of 𝑓exist and are 

continuous over the domain of the function, Then the Hessian matrix 𝐻(𝑥)of 𝑓is square 

𝑛 × 𝑛matrix, usually defined and arranged as follows. 
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𝐻 𝑥 =

 
 
 
 
 
 
 
𝜕2𝑓1

𝜕𝑥1
2

  …          
𝜕2𝑓1

𝜕𝑥1𝜕𝑥𝑛.
  .            .                .

    .                   .          .
𝜕2𝑓𝑛
𝜕𝑥𝑛𝑥1

    .       .    .   
𝜕2𝑓𝑛
𝜕2𝑥𝑛

2 
 
 
 
 
 
 

 

Theorem: The first order necessary conditions for optimality 

Let 𝑓: 𝑅𝑛 → 𝑅be differentiable at a point𝑥 𝑐𝑅𝑛 . If �̅�is a local solution to the problem 

𝑃,then 𝛻 𝑓(�̅�)  =  0. 

Proof: From the definition of the derivative we have that 

𝑓(𝑥) = 𝑓(�̅�) + 𝛻𝑓(�̅�)𝑇(𝑥 − �̅�) + 0(‖𝑥 − �̅�‖)where 

lim
𝑥→𝑥̅

𝑜(‖𝑥 − �̅�‖)

‖𝑥 − �̅�‖
= 0 

 

 
 

Let 𝑥 =  �̅� −  𝑡𝛻 𝑓(�̅�) forsufficiently small 𝑡 >  0.Then 

0 ≤
𝑓 𝑥 − 𝑡∇𝑓 𝑥  − 𝑓 𝑥   

𝑡
= −‖∇𝑓 𝑥  ‖2 +

𝑜(𝑡)‖∇𝑓(�̅�)‖

𝑡
 

Taking the limit as 𝑡 → 0,we obtain‖𝛻𝑓(�̅�)‖2 ≤ 0 

Therefore ‖𝛻𝑓(�̅�)‖= 0. 

Hence,  𝛻𝑓(�̅�)  =  0. x̅ is a stationary point if 𝛻𝑓(�̅�)  =  
Definition2.5: 

A set𝑆 ⊆ 𝑅𝑛 is a convex set if 𝑓 it contains the line segment joining any of its points. i.e., 

𝑥,𝑦 ∈  𝑆 and  ∈  [0, 1]such that 𝑥 +  (1 −  )𝑦 ∈  𝑆. 
Example: 𝐶 =  {(𝑥1,𝑥2,𝑥3)  ∈  𝑅3 : x1 + 2x2 - x3 = 4} 

Definition2.6: 

A function𝑓:𝑆 → ℝdefinedonaconvexsubset S of𝑅𝑛 isconvexifforany 𝑥,𝑦 ∈  𝑆and 

 ∈  [0, 1], we have 𝑓(𝑥 + (1 −  )𝑦)  ≤  𝑓(𝑥)  +  (1 −  )𝑓(𝑦).If𝑓 is twice 

continuously differentiable and the domain is there alien, then𝑓isconvex. 

𝑖. 𝑒. ,𝑓"(𝑥) ≥ 0,∀𝑥intheinterval,then𝑓isconvex. 

Proposition 2.6: Let 𝑓𝑖 :𝑅
𝑛 →𝑅, 𝑖 = 1,… ,𝑛be given functions, let 1,… , 𝑛be 

positive scalars, and consider the function𝑔:𝑅𝑛 → 𝑅,given by: 

𝑔 𝑥 = 1𝑓1 + ⋯+ 𝑛𝑓𝑛 (𝑥),if 𝑓1 ,… , 𝑓𝑛are convex, then𝑔 is also convex. 

Proof: Let𝑓1 ,… ,𝑓𝑛be convex. We use the definition of convexity to show that 𝑔 is convex. Let 

𝑥, 𝑦 ∈ 𝑅𝑛and𝛼 ∈  0,1  
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𝑔 𝛼𝑥 +  1 − 𝛼 𝑦 =  (𝜆𝑗𝑓𝑗 (𝛼𝑥
𝑚

𝑗=1
+  1− 𝛼 𝑦 ≤ (𝜆𝑗 (𝛼𝑓𝑗  𝑥 + (1 − 𝛼)𝑓𝑗 (𝑦)

𝑚

𝑗=1

) 

=  𝜆𝑗𝑓𝑗 (𝑥)

𝑚

𝑗=1

+  1− 𝛼  𝜆𝑗𝑓𝑗  𝑦 

𝑚

𝑗=1

= 𝛼𝑔 𝑥 + (1−𝛼)𝑔(𝑦) 

Hence 𝑔 is convex. 

Definition 2.7:  

A set 𝑆 ⊆ 𝑅𝑛  is affine if the line through any two distinct points in 𝑆 lies in 𝑆 i.e., if for any 

𝑥1,𝑥2 and  ∈  ℝ, we have  𝑥1 +  (1 −  ) 𝑥2 ∈  𝑆.  Inother words, S contains the linear 

combination of any two points in S, provided the coefficients in the linear combination sum to 

one. An affine set contains every affine combination of its points: if S is affine set, 𝑥1, … 

,𝑥𝑘 ∈  𝑆, and 1+ ⋯+ 𝑘= 1, then the point 1𝑥1 + ⋯+ 𝑘𝑥𝑘also belongs  to S. 

Example: solution set of linear equations{𝑥:𝐴𝑥 = 𝑏},every affine set can be expressed as 

solution set of system of linear equation. 

Definition 2.8: A set K is called a cone if 𝜃𝑥 ∈  𝐾for each 𝑥 ∈  𝐾and 𝜃 ≥  0. 

Examples: ℝ+ =   𝑥 ∈  ℝ: 𝑥 ≥  0 , 𝑘 =  𝑥 ∈ 𝑅𝑛 : 𝑥𝑖
2 , 𝑥1 ≥ 0

𝑞
𝑖=1  second-order cone) 

 

Definition 2.9:  

A convex cone K is a cone with additional property that 𝑥 +  𝑦 ∈  𝐾for each 

𝑥,𝑦 ∈  𝐾or for any 𝑥,𝑦 ∈  𝐾and 𝜃1 ,𝜃2≥ 0, we have𝜃11+ 𝜃2𝑥2 ∈  𝐾. 

Definition 2.10: A cone 𝐾 ⊆ 𝑅𝑛 is called a proper cone if it satisfies the following: 

(i) 𝐾 is closed, 𝑥,𝑦 ∈  𝐾 ⇒  𝑥 +  𝑦 ∈ 𝐾, 

(ii) 𝐾 is pointed cone with property that𝐾 ∩ (−𝐾) = {0},which means that if it 

does not contain any subspace except the origin. 

(iii) Convex and full-dimensional cone (𝑖. 𝑒. 𝑑𝑖𝑚 (𝐾)  =  𝑛). A full-dimensional cone is 

a cone which contains 𝑛 linearly independent vectors. 

Definition 2.11 (dual cone): The dual cone K
*
of a proper cone is the set{𝑠: 𝑠𝑇𝑥 ≥ 0,∀𝑥 ∈  𝐾} 

The dual cone satisfies several properties, such as: 

 𝐾∗is closed and convex  

 𝐾1 ⊆ 𝐾2implies 𝐾1
∗ ⊆ 𝐾2

∗
 

 

 If K has nonempty interior, then K
* 

is pointed 

 K
**

= K, if K is convex and closed. 

Definition 2.12: A function 𝑓:𝑅𝑛 → 𝑅 with domain 𝑓 = 𝑅𝑛   is called a norm if 
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(i) 𝑓is nonnegative: 𝑓(𝑥)  ≥  0 for all 𝑥 ∈ 𝑅𝑛 . 

(ii) 𝑓 is definite: 𝑓(𝑥) = 0 if and only if 𝑥 = 0. 

(iii) 𝑓 is homogeneous: 𝑓(𝑐𝑥)  = |𝑐|𝑓(𝑥), for all 𝑥 ∈ 𝑅𝑛and 𝑐 ∈ ℝ 

(iv) 𝑓satisfies the triangle inequality: 𝑓(𝑥 + 𝑦) ≤ 𝑓(𝑥) + 𝑓(𝑦),for all 

𝑥,𝑦 ∈ 𝑅𝑛 .  

We use the notation 𝑓(𝑥) = ‖𝑥‖,which is meant to suggest that a norm 

is a generalization of the absolute value on ℝ. 

Definition2.13: The standard Euclidean normis:

‖𝑥‖ =  𝑥𝑥𝑇= ( 𝑥𝑖
2𝑞

𝑖=1 )
1

2where𝑥 ∈ 𝑅𝑛  

Cauchy-Schwarz inequality: state that 𝑥𝑇𝑠 ≤ ‖𝑥‖‖𝑠‖for 𝑥, 𝑠 ∈ 𝑅𝑛 the inequality 

holds with equality if and only if 𝑥and 𝑠are linear dependent. 

Definition 2.14: A second order cone of dimension n is defined as 

𝑘 =   
𝑥0

𝑥
 :𝑥0 ∈ 𝑅, 𝑥 ∈ 𝑅𝑛−1 for‖𝑥‖ ≤ 𝑥0,𝑥0 ≥ 0

 

A second order cone is also called quadratic or Lorentz cone. For 𝑛 = 1 we define the unit 

second order cone as: 

𝐾1= {𝑥: 𝑥 ∈  ℝ, 𝑥 ≥  0} 

Note that the second-order cone 𝐾 is a convex set in 𝑅𝑛because for any two points in 𝐾, 

[𝑥01      𝑥1
𝑇]𝑇and  [𝑥02      𝑥2

𝑇]𝑇 , and 𝜆 ∈  [0,1], we have: 

𝜆  
𝑥01

𝑥1
 +  1− 𝜆  

𝑥02

𝑥2
 =  

𝜆𝑥01 + (1− 𝜆)𝑥02

𝑥1 +  1− 𝜆 𝑥2
 ∈ 𝐾

as  𝜆𝑥01 + (1 − λ)𝑥02 ∈ 𝑅, 𝜆𝑥1+ (1 − λ)𝑥2 ∈ 𝑅
𝑛−1and 

‖λ𝑥1 +  (1 −  λ)𝑥2‖≤ 𝜆‖𝑥1‖+ (1 −  𝜆) )‖𝑥2‖≤ 𝜆𝑥01  + (1 − 𝜆)𝑥02. 

3. SECOND ORDER CONEPROGRAMMING 

Second order cone programming is a generalization of linear and quadratic programming that 

allows for affine combination of variables to be constrained inside a special convex set, called 

second order cone. The SOCP problem includes LPs, QPs and QCQPs as special classes with 

convex objective function and constraints of affine set. In this chapter we deal with SOCP, QP, 

QCQP, LP problems and approximate theirsolution. 

 3.1. SECOND-ORDER CONEPROGRAMMING 
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The primal second-order cone-programming (SOCP) problem is a constrained optimization 

problem that can be formulated as: 

Minimize  𝑐𝑖 
𝑇𝑥𝑖

𝑞
𝑖=1     (3.1a) 

 Subject to  𝐴 𝑖𝑥𝑖 = 𝑏
𝑞
𝑖=1     (3.1b) 

𝑥𝑖 ∈ 𝐾𝑖  for 𝑖 = 1,2,… , 𝑞.    (3.1c)

where 𝑥𝑖 ∈ 𝑅𝑛 𝑖×1is a variable, 𝐴𝑖∈𝑅
𝑚×𝑛 𝑖 is a given matrix, 𝑛 >𝑚,𝑐 𝑖 ∈ 𝑅

𝑛 𝑖×1and  𝑏 ∈
𝑅𝑚×1are given vectors, and𝐾is the Cartesian product of second-order cones: 𝐾 = 𝑘1 ×
𝑘2 +⋯+ 𝑘𝑞 ,and 𝑘𝑖 is an 𝑛𝑖  dimensional second order cone which is defined by: 

𝐾𝑖 =  (𝑥0, 𝑥)𝑇 ∈ 𝑅𝑛𝑖 :𝑥0 ≥ ‖𝑥‖ ,𝑥0 ∈ 𝑅, 𝑥 ∈ 𝑅𝑛𝑖−1 , ‖𝑥‖ =  𝑥1
2 + 𝑥2

2
+⋯+ 𝑥𝑞

2 ,𝑛 =  𝑛𝑖
𝑞
𝑖=1

  

It is interesting to note that the SOCP problems in Eq.(3.1) are involving a linear objective 

function and a linear equality constraint. Each variable vector  𝑥𝑖 in an SOCP problem is 

constrained to the second-order cone𝐾𝑖 . For 𝑛 = 1, the second-order cone degenerates 

into a ray on the x-axis starting from 𝑥 =  0, as shown in Fig. (3.1a). The second-order 

cones for 𝑛 = 2 and 3 are depicted in Fig.3.1b and c, respectively as follows. 

 

 

Figure 1 Second-order cones of dimension (a) 𝑛 = 1, (b) 𝑛 = 2, and (c) 𝑛 = 3.

The standard form SOCP can accommodate nonnegative variables. The second-order cone 

constraints can be used to represent several common constraints. In fact if all cones 𝐾𝑖are one- 

dimensional cone, then Eq. (3.1) is just a standard form of linear programming Eq. (3.4) that is 

described in section (3.2). 

Example (Euclidean) ball with center ( 𝑥𝑐) and radius (𝑟), 

The dual of the SOCP problem in Eq. (3.1) referred to here after as the dual SOCP problem can be 

shown to be of the form: 

Maximize  𝑏𝑇𝑦   (3.2.a) 
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Subject to:  𝐴 𝑖
𝑇
𝑦 + 𝑠𝑖 = 𝑐𝑖    (3.2b) 

𝑖 =  1,⋯ , 𝑞 

where 𝑦 ∈ 𝑅𝑚×1and  𝑠𝑖 ∈ 𝑅
𝑛 𝑖×1.                                                           (3.2c) 

 

A SOCP is a convex optimization problem having linear objective function and second- order 

cone constraints. If we let 𝑥 = −𝑦𝐴 𝑖
𝑇

=  
𝑐𝑖
𝑇

𝐴𝑖
𝑇 and  𝑐𝑖 =  

𝑑𝑖
𝑏𝑖
 , then t  the  SOCP  problem  in  

equation (3.2) can be expressed as: 

Minimize 𝑏𝑇𝑥 (3.3a) 

Subject to:  𝐴𝑖
𝑇𝑥 + 𝑏𝑖  ≤ 𝑐𝑖

𝑇𝑥 + 𝑑𝑖  ,   𝑖 =  1,⋯ , 𝑞 (3.3b) 

where 𝑥 ∈  𝑅𝑛 is the optimization variable, and the problem parameters are𝑏 ∈ 𝑅𝑛  ,𝐴𝑖 ∈
𝑅(𝑛 𝑖−1)×𝑛 , 𝐴𝑖 ∈  𝑅𝑛 𝑖−1,𝑐𝑖 ∈ 𝑅

𝑛  and 𝑑𝑖 ∈  ℝ. The norm appearing in the constraints is the 

standard Euclidean norm. We call the constraint  𝐴𝑖
𝑇𝑥 + 𝑏𝑖  ≤ 𝑐𝑖

𝑇𝑥 + 𝑑𝑖 is asecond-order 

coneconstraint of dimension𝑛𝑖, when𝑛 =  𝑛𝑖
𝑞
𝑖=1 .

The main idea of SOCP is that objective function in optimal problem can be translated into 

constraint function by introducing variables, then through suitable transform, new objective 

variable and original variables to be optimized can be combined into new optimized variable, and 

the original problem constraint can transform into SOCP constraint, finally, as long as 

objective function and constraint function in the optimization problem can be expressed in the 

form of SOCP. 

SOCPs are representative of a quite large class of convex optimization problems. Indeed, LPs, 

convex QPs, SOCP and SDP can all be represented as CP problems as illustrated in fig. (3.2) 

bellow. 

 

 

Figure 2 Relations among LP, convex QP, SOCP, SDP, and CP problems. 
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SOCP problems are a convex optimization problem, which include LP, QP and QCQP 

problems as special class. 
4.1. QUADRATIC PROGRAMMING (QP) PROBLEM 

We have already seen that an LP is readily expressed as an SOCP with one dimensional cone. Let 

us now consider the general convex quadratic programming (QP). QP is a family of methods, 

techniques, and algorithms that can be used to minimize quadratic objective function subject to 

linear constraints. On the one hand, QP shares many combinatorial features withlinear 

programming (LP) and on the other; it is often used as the basis of constrained nonlinear 

programming. In fact, the computational efficiency of a nonlinear programming algorithm is often 

heavily dependent on the efficiency of the QP algorithm involved. As a special case, we can 

formulate a convex quadratic programming (QP) problem 

Minimize𝑥𝑇𝑝𝑥 + 2𝑞0
𝑇𝑥 + 𝑟0 (3.9a) 

Subject to: 𝑎𝑖
𝑇𝑥 ≤ 𝑏𝑖 , 𝑖  =   1,… , 𝑞 (3.9b) 

as an SOCP with one constraint of dimension 𝑛 + 1 and 𝑞 constraint of dimension one, 

where  𝑝is symmetric 𝑛× 𝑛positive definite matrices,𝑞0is a vectors in𝑅𝑛 and 𝑟0 is scalar. We 

show that the problem can be converted to second-order cone format. We have:𝑥𝑇𝑝𝑥 +

2𝑞0
𝑇𝑥 + 𝑟0 = (𝑝

1

2𝑥)𝑇𝑝
1

2𝑥 + 2(𝑝−
1

2𝑞0)𝑇𝑝
1

2𝑥+ 𝑟0  

= (𝑝
1

2𝑥)𝑇𝑝
1

2𝑥 + 2(𝑝−
1

2𝑞0)𝑇𝑝
1

2𝑥 + 𝑞0
𝑇𝑝−1𝑞0 + 𝑟0 − 𝑞0

𝑇𝑝−1𝑞0 

= (𝑝
1

2𝑥) + (𝑝−
1

2𝑞0) 
2

+ 𝑟0 − 𝑞0
𝑇𝑝−1𝑞0 

where 𝑝 is symmetric and positive semi-definite matrix mean that 𝑝 = 𝑝𝑇and spectral 

decomposed matrix. 

Let 𝑝 = 𝑝−1𝑞0be a constant, then minimizing (3.9a) is equivalent to minimizing 𝑝
1

2𝑥 + 𝑝  and 

thus the problem in Eq. (3.9) can be formulated as: 

Minimize𝑡 (3.10a) 

Subject to:  𝑝
1

2𝑥 + 𝑝  ≤ 𝑡 (3.10b) 

𝑎𝑖
𝑇𝑥 ≤ 𝑏𝑖 ,𝑖 =  1,… , 𝑞 (3.10c) 

Where𝑡is an upper bound for 𝑝
1

2𝑥 + 𝑝  that can treated as an auxiliary variable of the 
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Minimize𝑏𝑇𝑥                                                                                  (3.11a) 

Subject to: ‖𝑒�̅� + 𝑒 ‖ ≤ 𝑏 𝑇𝑥  (3.11b) 

𝐴 𝑥 ≤ 𝑏 (3.11c) 

which is SOCP problem. 

5. SECOND ORDER CONEPROGRAMMING 

Second order cone programming is a generalization of linear and quadratic programming that 

allows for affine combination of variables to be constrained inside a special convex set, called 

second order cone. The SOCP problem includes LPs, QPs and QCQPs as special classes with 

convex objective function and constraints of affine set. In this chapter we deal with SOCP, QP, 

QCQP, LP problems and approximate theirsolution. 

5.1. SECOND-ORDER CONEPROGRAMMING 

The primal second-order cone-programming (SOCP) problem is a constrained optimization 

problem that can be formulated as: 

 Minimize  𝑐𝑖 
𝑇𝑥𝑖

𝑞
𝑖=1     (3.1a) 

 Subject to  𝐴 𝑖𝑥𝑖 = 𝑏
𝑞
𝑖=1     (3.1b) 

𝑥𝑖 ∈ 𝐾𝑖  for 𝑖 = 1,2,… , 𝑞.     (3.1c)

where 𝑥𝑖 ∈ 𝑅𝑛 𝑖×1is a variable𝐴𝑖∈𝑅
𝑚×𝑛 𝑖 is a given matrix, 𝑛 >𝑚,𝑐 𝑖 ∈ 𝑅

𝑛 𝑖×1and  

𝑏 ∈ 𝑅𝑚×1are given vectors, and𝐾is the Cartesian product of second-order cones: 

𝐾 = 𝑘1 × 𝑘2 +⋯+ 𝑘𝑞 ,and 𝑘𝑖 is an 𝑛𝑖 dimensional second order cone which is defined by: 

𝐾𝑖 =  (𝑥0,𝑥)𝑇 ∈ 𝑅𝑛 𝑖 :𝑥0 ≥ ‖𝑥‖ ,𝑥0 ∈ 𝑅,𝑥 ∈ 𝑅𝑛 𝑖−1 ,‖𝑥‖ =  𝑥1
2 + 𝑥2

2
+⋯+ 𝑥𝑞

2, 𝑛 =  𝑛𝑖
𝑞
𝑖=1

It is interesting to note that the SOCP problems in Eq.(3.1) are involving a linear objective 

function and a linear equality constraint. Each variable vector  𝑥𝑖 in an SOCP problem is 

constrained to the second-order cone𝐾𝑖 . For 𝑛 = 1, the second-order cone degenerates into a 

ray on the x-axis starting from 𝑥 =  0, as shown in Fig. (3.1a).The second-order cones for 

𝑛 = 2 and 3 are depicted in Fig.3.1b and c, respectively as follows. 

 

Figure 1 Second-order cones of dimension (a) 𝑛 = 1, (b) 𝑛 = 2, and (c) 𝑛 = 3. 
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The standard form SOCP can accommodate nonnegative variables. The second-order cone 

constraints can be used to represent several common constraints. In fact if all cones 𝐾𝑖are one- 

dimensional cone, then Eq. (3.1) is just a standard form of linear programming Eq. (3.4) that is 

described in section (3.2). 

Example (Euclidean) ball with center ( 𝑥𝑐) and radius (𝑟), 
 

The dual of the SOCP problem in Eq. (3.1) referred to here after as the dual SOCP problem can be 

shown to be of the form: 

Maximize  𝑏𝑇𝑦   (3.2a) 

Subject to:  𝐴 𝑖
𝑇
𝑦 + 𝑠𝑖 = 𝑐𝑖    (3.2b) 

For𝑖 =  1,⋯ , 𝑞 

where 𝑦 ∈ 𝑅𝑚×1and  𝑠𝑖 ∈ 𝑅
𝑛 𝑖×1.                                                            (3.2c) 

 

A SOCP is a convex optimization problem having linear objective function and second- order 

cone constraints. If we let 𝑥 = −𝑦𝐴 𝑖
𝑇

=  
𝑐𝑖
𝑇

𝐴𝑖
𝑇 and  𝑐𝑖 =  

𝑑𝑖
𝑏𝑖
 , then t  the  SOCP  problem  in  

equation (3.2) can be expressed as: 

Minimize 𝑏𝑇𝑥 (3.3a) 

Subject to:  𝐴𝑖
𝑇𝑥 + 𝑏𝑖  ≤ 𝑐𝑖

𝑇𝑥 + 𝑑𝑖  ,   𝑖 =  1,⋯ , 𝑞 (3.3b) 

where 𝑥 ∈  𝑅𝑛 is the optimization variable, and the problem parameters are𝑏 ∈ 𝑅𝑛  ,𝐴𝑖 ∈
𝑅(𝑛 𝑖−1)×𝑛 , 𝐴𝑖 ∈  𝑅𝑛 𝑖−1,𝑐𝑖 ∈ 𝑅

𝑛  and 𝑑𝑖 ∈  ℝ. The norm appearing in the constraints is the 

standard Euclidean norm. We call the constraint  𝐴𝑖
𝑇𝑥 + 𝑏𝑖  ≤ 𝑐𝑖

𝑇𝑥 + 𝑑𝑖 is asecond-order 

coneconstraint of dimension𝑛𝑖, when𝑛 =  𝑛𝑖
𝑞
𝑖=1

The main idea of SOCP is that objective function in optimal problem can be translated into 

constraint function by introducing variables, then through suitable transform, new objective 

variable and original variables to be optimized can be combined into new optimized variable, and 

the original problem constraint can transform into SOCP constraint, finally, as long asobjective 

function and constraint function in the optimization problem can be expressed in the form of SOCP. 

SOCPs are representative of a quite large class of convex optimization problems. Indeed, LPs, 

convex QPs, SOCP and SDP can all be represented as CP problems as illustrated in fig. (3.2) 

below 
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Figure 2 Relations among LP, convex QP, SOCP, SDP, and CP problems.

problems as special class. 
5.2. QUADRATIC PROGRAMMING (QP) PROBLEM 

We have already seen that an LP is readily expressed as an SOCP with one dimensional cone. Let 

us now consider the general convex quadratic programming (QP). QP is a family of methods, 

techniques, and algorithms that can be used to minimize quadratic objective function subject to 

linear constraints. On the one hand, QP shares many combinatorial features withlinear 

programming (LP) and on the other; it is often used as the basis of constrained nonlinear 

programming. In fact, the computational efficiency of a nonlinear programming algorithm is often 

heavily dependent on the efficiency of the QP algorithm involved. As a special case, we can 

formulate a convex quadratic programming (QP) problem 

Minimize𝑥𝑇𝑝𝑥 + 2𝑞0
𝑇𝑥 + 𝑟0 (3.4a) 

Subject to: 𝑎𝑖
𝑇𝑥 ≤ 𝑏𝑖 , 𝑖  =   1,… , 𝑞 (3.4b) 

as an SOCP with one constraint of dimension 𝑛 + 1 and 𝑞 constraint of dimension one,
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where  𝑝is symmetric 𝑛× 𝑛positive definite matrices,𝑞0is a vectors in𝑅𝑛 and 𝑟0 is scalar. We 

show that the problem can be converted to second-order cone format. We have: 

𝑥𝑇𝑝𝑥 + 2𝑞0
𝑇𝑥 + 𝑟0 = (𝑝

1

2𝑥)𝑇𝑝
1

2𝑥 + 2(𝑝−
1

2𝑞0)𝑇𝑝
1

2𝑥 + 𝑟0  

= (𝑝
1

2𝑥)𝑇𝑝
1

2𝑥 + 2(𝑝−
1

2𝑞0)𝑇𝑝
1

2𝑥 + 𝑞0
𝑇𝑝−1𝑞0 + 𝑟0 − 𝑞0

𝑇𝑝−1𝑞0  

= (𝑝
1

2𝑥) + (𝑝−
1

2𝑞0) 
2

+ 𝑟0 − 𝑞0
𝑇𝑝−1𝑞0 

 

where 𝑝 is symmetric and positive semi-definite matrix mean that 𝑝 = 𝑝𝑇and spectral 

decomposed matrix. 

Let 𝑝 = 𝑝−1𝑞0be a constant, then minimizing (3.9a) is equivalent to minimizing 𝑝
1

2𝑥 + 𝑝  and 

thus the problem in Eq. (3.9) can be formulated as: 

Minimize𝑡 (3.5a) 

Subject to:  𝑝
1

2𝑥 + 𝑝  ≤ 𝑡     (3.5b) 

𝑎𝑖
𝑇𝑥 ≤ 𝑏𝑖 ,𝑖 =  1,… , 𝑞     (3.5c) 

Where𝑡is an upper bound for 𝑝
1

2𝑥 + 𝑝  that can treat as an auxiliary variable  

Minimize𝑏𝑇𝑥     (3.6a) 

Subject to: ‖𝑒�̅� + 𝑒 ‖ ≤ 𝑏 𝑇𝑥      (3.6b) 

𝐴 𝑥 ≤ 𝑏     (3.6c) 

which is SOCP problem. 
5.3. QUADRATICALLY CONSTRAINED QUADRATIC PROGRAMMING (QCQP) 

Quadratically constrained quadratic programming (QCQP) problem is a problem in which 

both objective function and constraint functions are quadratic. We have already seen that QP 

problem is readily expressed as an SOCP. Let us now consider the general convex 

quadratically constrained quadraticprogramming 

Minimize 𝑓 𝑥 = 𝑥𝑇𝑝0𝑥 + 2𝑞0
𝑇𝑥 + 𝑟0 (3.7a) 

 

Subject to:𝑥𝑇𝑝𝑖𝑥 + 2𝑞𝑖
𝑇𝑥 + 𝑟𝑖 ≤ 0, 𝑖 =  1,… , 𝑞 (3.7b) 

where 𝑝0 ,𝑝1 ,… ,𝑝𝑛  ∈ 𝑅
𝑛are symmetric, positive semi-definite and spectral 

decomposed matrix. We will assume, for simplicity, that the matrices 𝑝𝑖   are positive 

definite, although the problem can be reduced to SOCP in general. 

Any convex quadratic constraint of an optimization problem can be rewritten using second- 

order cone membership constraints. When we have access to a reliable solver for second-order 

cone optimization, it may be desirable to convert convex quadratic constraints to second 

ordercone constraints. Fortunately, a simple recipe is available for these conversions. Consider 

the following quadratic constraint: 
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𝑥𝑇𝑝𝑖𝑥 + 2𝑞𝑖
𝑇𝑥 + 𝑟𝑖 ≤ 0, 

This is a convex constraint if the function on the left-hand side is convex which is true if and 

only if 𝑝𝑖 is a positive semi-definite matrix. Let us assume 𝑝𝑖 is positive definite for simplicity. 

Then problem in Eq. (3.12) reformulate similarly as QP 

𝑥𝑇𝑝0𝑥 + 2𝑞0
𝑇𝑥 + 𝑟0 =  𝑝0

1

2𝑥 + 𝑝0
−

1

2𝑞0 
2

+ 𝑟0 − 𝑞0
𝑇𝑝0

−1𝑞0 

𝑥𝑇𝑝𝑖𝑥 + 2𝑞𝑖
𝑇𝑥 + 𝑟𝑖 =  𝑝𝑖

1

2𝑥 + 𝑝𝑖
−

1

2𝑞𝑖 
2

+ 𝑟𝑖 − 𝑞𝑖
𝑇𝑝𝑖

−1𝑞𝑖 ≤ 0, 𝑖 =  1,…  ,𝑞

This can be solved via the SOCP with 𝑝 + 1 constraints of dimension  𝑛 + 1, let 𝑡 is the upper

bound of  𝑝0

1

2𝑥 + 𝑝0
−

1

2𝑞0  then the general convex quadratically constrained quadratic 

programming problem (3.12) is reformulated as: 

Minimize 𝑡                                                                                                                                             (3.8𝑎) 

Subject to:   𝑝0

1

2𝑥 + 𝑝0
−

1

2𝑞0 ≤ 𝑡        (3.8b) 𝑝𝑖
1

2𝑥 + 𝑝𝑖
−

1

2𝑞𝑖 ≤

 𝑞𝑖
𝑇𝑝𝑖

−1𝑞𝑖−𝑟𝑖 
2  (3.8𝑐) 

Where 𝑡 ∈ 𝑅 is a new optimization variable
 

The optimal values of problem (3.12) and (3.13) are equal up to a constant and square root. 

More precisely, the optimal value of the QCQP (3.13) is equal to   𝑝∗2 + 𝑟0 − 𝑞0
𝑇𝑝0

−1𝑞0 

where 𝑝* 
is the optimal value of SOCP (3.12). 

5.4. THE DUAL SOCP 

In this section we outline the duality theory for SOCP problems 

the dual of the SOCP (3.3) is given by: 

Maximize - (𝑏𝑖
𝑇𝑦𝑖 +𝑑𝑖𝑠𝑖)

𝑞
𝑖=1 (3.9) 

Subject to:  𝐴𝑖𝑦𝑖 + 𝑐𝑖𝑠𝑖 = 𝑐
𝑞
𝑖=1  

‖𝑦𝑖‖≤ 𝑠𝑖 , 𝑖= 1,… ,𝑞 
 

where𝑦𝑖 ∈ 𝑅
𝑛 𝑖−1and 𝑠𝑖 ∈ 𝑅

𝑞are the dual optimization variables. We denote a set of 

𝑦𝑖’s, 𝑖 =  1,…  ,𝑞,by 𝑦. The dual SOCP (3.14) is also a convex programming 

problem 
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We will refer to the SOCP (3.3) as the primal SOCP when we need to distinguish it from 

the dual. The primal SOCP (3.3) is called feasible if there exists a primal feasible set 𝑥, 

i.e., an 𝑥 that satisfies all constraints in Eq. (3.3). It is called strictly feasible if there exists 

a strictly primal feasible 𝑥, i.e., an 𝑥 that satisfies the constraints with strict inequality. The 

vectors 𝑦  and 𝑠are dual feasible if they satisfy the constraints in Eq. (3.14) and strictly 

dual feasible if in addition they satisfy ‖𝑦𝑖‖  ≤  𝑠𝑖 , 𝑖 =  1, . . , 𝑞. We say the dual SOCP 

(3.14) is strictly feasible if there exist strictly feasible𝑦
𝑖
and 𝑠𝑖. 

The difference between the primal and dual objectives is called the duality gap. The 

duality gap associated with 𝑥,𝑦 and 𝑠 will be denoted by 𝜂(𝑥,𝑦, 𝑠), or simply 𝜂.\ 

𝜂 𝑥,𝑦, 𝑠 = 𝑐𝑇𝑥 − (− (𝑏𝑖
𝑇𝑦𝑖 + 𝑑𝑖𝑠𝑖)

𝑞
𝑖=1 )                                                                       

(3.10) 

= 𝐶𝑇𝑥 +  (𝑏𝑖
𝑇𝑦𝑖 + 𝑑𝑖𝑠𝑖)

𝑞

𝑖=1

 

The basic facts about the dual problem are: 

 

5.4.1. (Weak duality):  the dual   objective   is   less  or   equal   to   the   primal   objective at 

optimum  𝑝∗ ≥ 𝑑∗ 

5.4.2. Strong duality)if the primal and dual problems are strictly feasible, then 𝑝∗ = 𝑑∗ 

5.4.3. If the primal and dual problems are strictly feasible, then there exist primal and dual 

feasible points that attain the optimal values. 

Weak duality corresponds to the fact that the duality gap is always nonnegative, for any 

feasible x, y and s. To see this, we observe that the duality gap is associated with primal and 

dual feasible points x, y and s can be expressed as a sum of nonnegative terms, by writing it in 

the form: 

𝜂 𝑥,𝑦, 𝑠 =  (𝑦𝑖
𝑇 𝐴𝑖

𝑇𝑥 + 𝑏𝑖 + 𝑠𝑖(𝑐𝑖
𝑇𝑥 + 𝑑𝑖))

𝑞
𝑖=1 =  (𝑦𝑖

𝑇𝑢𝑖 + 𝑠𝑖𝑡𝑖)
𝑞
𝑖=1   (3.11)

Each term in the right- hand sum is nonnegative, where  𝑢𝑖 = 𝐴𝑖
𝑇𝑥 + 𝑏𝑖  and 𝑡𝑖 = 𝑐𝑖

𝑇𝑥 + 𝑑𝑖 . 

𝑦𝑖
𝑇𝑢𝑖 + 𝑠𝑖𝑡𝑖 ≥ ‖𝑦𝑖‖‖𝑠𝑖‖+ 𝑠𝑖𝑡𝑖 ≥ 0 

The first inequality follows from the Cauchy-Schwarz inequality. The second inequality 

follows from the fact that 𝑡𝑖  ≥ ‖𝑡𝑖‖ ≥  0 and 𝑠𝑖  ≥ ‖𝑦𝑖‖ ≥  0. Therefore 𝜂 𝑥,𝑦, 𝑠 ≥  0 for 

any feasible 𝑥, 𝑦, 𝑠and as immediate consequence we have𝑦∗ ≥ 𝑑∗, i.e., weak duality. 
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5.5. LOGARITHMIC BARRIER FUNCTIONS FOR LP AND SOCP 

We now define the notation of barrier function for convex in general and for the LP and 

SOCP, in particular. Then explain how we can use the barrier functions to find the optimal 

solutions of these problems. We use the barrier function to convert the constrained 

optimization to essentially, an unconstrained optimization problem. When we are solving these 

problems we assume that the constraint set is a convex set and has nonempty interior. When 

we looked at the Lagrangian methods for minimizing twice differentiable convex function 

with equality constraints, one of the limitations of this method is that we cannot deal with 

inequality constraints. The barrier method is away to address this issue. 

Definition A barrier function is a continuous function whose values on a point increase to 

infinity as the point approaches the boundary of the feasible region of an optimization 

problem. 

Let 𝐾 ∈ 𝑅𝑛  be a convex set with nonempty interior. Then the function 𝑔: interior of 𝐾 → 𝑅  is 

called a barrier function if it has the following properties 

(i) 𝑔 is convex 

(ii) For each sequence of point 𝑥𝑛 is interior of 𝐾 such that lim𝑛→∞ 𝑥𝑛  exists and 

belongs to interior of 𝐾, lim𝑛→∞ 𝑔 𝑥𝑛   = ∞. 

Note that since the domain of 𝑔(𝑥)is interior of 𝐾 and by the properties of 𝑔(𝑥), the 

minimum value of 𝑔 is attained in the interior of 𝐾. Now let us explain how we use the 

barrier functions. Consider the following constrained minimization problem 

(P)      Minimize 𝑐𝑇𝑥 (3.12) 

Subject to: 𝑥 ∈  𝐾 

Let 𝑔(𝑥)be a barrier function for problem (P).Forgiven,µ > 0,µ ∈ ℝ,by multiplying 

the barrier function with µ and adding it to the objective functions. We can convert 

the constrainedminimizationproblemtounconstrainedminimization problem(𝑃µ): 

(𝑃µ)Minimize  𝑐𝑇𝑥 + 𝜇 𝑔(𝑥)
𝑞
𝑖=1       (3.13)         

Let for µ > 0,𝑥𝜇
∗ be the point at which the minimum of Eq.(3.13)is attained. Since 

𝑔(𝑥) → ∞ when 𝑥 approaches the boundary of 𝐾 and 𝑃µis a minimization problem, 𝑥𝜇
∗is 

interior of (𝐾). Suppose we solve this problem for a decreasing sequence of𝜇𝑛 . One can show 

that as 𝜇𝑛 .→  0, 𝑥𝜇
∗ → x

*,the optimum of (𝑃). In other words, sequence of optimal points of 

the problem (Pµ) converges to the optimal point of the original problem (P). In fact, as µ varies 

towards zero, the set of “µ-optimal” points xµ
* 

traverse a smooth path in the interior of K 
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called the central path associated with the barrier function g; it can be shown that this path 

ends at x
*
. 

One may think that at the outset by choosing µ very small, we can solve the problem (𝑃𝜇 ) once 

and get a sufficiently close approximation to 𝑥∗.However, it turns out that the problem 

becomes numerically very ill-conditioned when µ is small. Also, for such a small µ it is hard 

to find a suitable initial solution.Instead a better approach is to first choose µ fairly large; the 

larger the µ, the easier it is to find an initial solution xo. Next, one uses one or a few iterations 

of Newton’s method at the current value of µ to get a new point 𝑥1. Then µ is reduced by a 

constant factor: µ ←  𝑎µ for some constant a, and the last result of Newton’s method, x1is used 

as a starting point for the new optimization problem. This process is repeated until x1is 

sufficiently close to x
*
. With judicious choices of the barrier function g(𝑥), 𝑎, and the initial 

point  𝑥0, one can show that the procedure just outlined can result in a well-behaved algorithm. 

Assuming it is possible to find a strictly feasible point x
*
, that is a point satisfying Eq. (3.17),  

a natural strategy for solving Eq. (3.18) is to decrease the objective function as much as 

possible while ensuring that the boundary of the feasible set is never crossed. One way to 

prevent an optimization algorithm from crossing the boundary is to assign a penalty to 

approaching it. The popularly way of doing this is to augment the objective function by a 

logarithmic barrier function. At the boundary and therefore presents an optimization algorithm 

with a barrier to crossing the boundary. Of course, the solution to an inequality constrained is 

likely to lie on the boundary of the feasible set, so the barrier must be gradually removed by 

reducing µ to ward zero. Now we find barriers for LP and SOCP problems. 

5.6. Logarithmic barrier for LP 
 

Consider the standard form of LP in Eq. (3.4), in this problem, as all the problems to follow; 

we won’t worry about the linear equality constraints in Eq. (3.1b), and focus on the inequality 

constraints xi ≥ 0. The boundary of the nonnegative or than 𝑡 consists of those where one xi is 

zero. By definition any barrier function for the LP problem must approach to ∞ as one of the 

components of 𝑥 = (𝑥1,𝑥2,… , 𝑥𝑞)𝑇goes to zero. Two examples of barrier functions for the 

nonnegative or than 𝑡 are: 

 
1

𝑥𝑖

𝑞
𝑖=1  and - log𝑥𝑖

𝑞
𝑖=1          (3.14)
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Notice that both of this function are convex and approach infinity as any of𝑥𝑖  approaches zero. 

Let us explore what we get by applying this barrier to the LP problem: 

(Pµ) Minimize 𝑐𝑇𝑥 − 𝜇 log 𝑥𝑖
𝑞
𝑖=1    (3.15) 

Subject to: 𝐴𝑥 = 𝑏 

where  𝑔 𝑥 = − log𝑥𝑖
𝑞
𝑖=1 is a barrier function and µ is a positive number called the barrier 

Parameter: The optimal solution to this problem can be found by using Lagrange’s theorem: The 

Lagrangian function for Eq. (3.15) is given by: 

 

𝐿 𝑥, 𝑦 = 𝑐𝑇𝑥 − 𝜇 log𝑥𝑖 + log𝑥𝑖 + 𝑦𝑇(𝑏 − 𝐴𝑥)
𝑞
𝑖=1                                                          (3.16)                                                

where 𝑦 ∈ 𝑅𝑛 are called Lagrange multipliers. By Lagrange’s theorem, 𝑥𝜇 is optimal for Eq. (3.20) 

if, and only if, the derivatives of Eq. (3.16) with respect to both 𝑥 and 𝑦 are zero. That is, we need 

to solve: 

∇𝑥𝐿𝜇 = 𝑐𝑇 − 𝜇  
1

𝑥1
,

1

𝑥2
,… ,

1

𝑥𝑞
 − 𝑦𝑇𝐴 = 0     (3.17) 

⟹ ∇𝑌𝐿𝜇 = 𝑏 − 𝐴𝑥 = 0

So, we have converted the LP into a nonlinear system of equations. Here we have 𝑚+𝑛 

variablesand 𝑚+𝑛equations. Since the numbers of variables are equal to the number of 

equations and by the assumption that the constraint qualification is met, in principle, we can

solve this system of equations. If we let: 

𝑠𝑇 =          𝜇  
1

𝑠1
,

1

𝑠2
,… ,

1

𝑠𝑞
 

𝑇

 

Then by rearranging the equations we get the KKT condition: 

𝐴𝑥 = 𝑏,
 (3.18)

𝐴𝑇𝑦 + 𝑠 = 𝑐, 

𝑠𝑖 − 𝜇𝑥𝑖
−1 = 0 , 𝑖 =  1, 2,…  , 𝑞. 

with𝑋= diag (𝑥1, . . .,𝑥𝑛), 𝑆 = 𝑠1, …  𝑠𝑛 , and if we multiply the last equation to the left by 

𝑋, we can rewrite KKT condition as: 

𝐴𝑇𝑦 + 𝑠 = 𝑐,
 (3.19)

𝐴𝑥 = 𝑏, 

𝑋𝑆 =  µ𝑒,𝑋, 𝑆 > 0 
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Where e = (1, 1, …, 1)
T
 we call equation (3.24) the KKT condition for primal and dual 

problems, due to the convexity of the functions on the feasible set. These conditions are 

necessary and sufficient for a fixed µ, for a variety of the value of µ as µ approaches to zero. 

Notethatthefirsttwosetsofequationsareprimalanddualfeasibilityconditions,for the LP 

problem, its dual, respectively. In addition the third set of equations, 𝑋𝑆 =  µ𝑒 can be 

interpreted as a relaxation of the complementary slackness condition; thus as µ 

approaches to zero the complementary slackness conditions will be satisfied by the 

(𝑥𝜇 ,𝑦𝜇 ,𝑠𝜇 ). 

5.7. Logarithmic barrier for SOCP 
 

Now let us define a suitable barrier function for SOCP and find the optimality by using first 

order necessary condition. 

Let us consider the SOCP problems in Eq. (3.3), the corresponding logarithmic barrier 

function for problems (3.3) is: 

𝑔(𝑥)  = − log(( 𝑐𝑖
𝑇𝑥 + 𝑑𝑖)

2 − ( 𝐴𝑖
𝑇𝑥 + 𝑏𝑖 

2
)

𝑞
𝑖=1                                            (3.20)

  

with domain 𝑔 = {𝑥: 𝐴𝑖
𝑇𝑥 + 𝑏𝑖 < 𝑐𝑖

𝑇𝑥 + 𝑑𝑖 , 𝑖 =  1,…  ,𝑞}. 
 

∇𝑔 = −2 
1

(𝑐𝑖
𝑇𝑥+𝑑𝑖)

2−  𝐴𝑖
𝑇𝑥+𝑏𝑖  

2 ((𝑐𝑖
𝑇𝑥 + 𝑑𝑖)𝑐𝑖

𝑇 − ( 𝐴𝑖
𝑇𝑥 + 𝑏𝑖 )

𝑞
𝑖=1 𝐴𝑖

𝑇 = 0       (3.21)

By a similar procedure as LP, the SOCP problem is replaced by: 

Minimize 𝑐𝑇𝑥 − 𝜇 log(( 𝑐𝑖
𝑇𝑥 + 𝑑𝑖)

2 − ( 𝐴𝑖
𝑇𝑥 + 𝑏𝑖 

2
)

𝑞
𝑖=1                                     (3.22) 

where µ is a barrier parameter. The optimal solution to this problem can be found by using first 

order necessary condition. 

∇𝑥𝐿 = 𝑐𝑇 −
2𝜇

(𝑐𝑖
𝑇𝑥+𝑑𝑖)

2−  𝐴𝑖
𝑇𝑥+𝑏𝑖  

2 (((𝑐𝑖
𝑇𝑥 + 𝑑𝑖)𝑐𝑖

𝑇 − ( 𝐴𝑖
𝑇𝑥 + 𝑏𝑖 )𝐴𝑖

𝑇 = 0          (3.23)

by rearranging Eq. (3.23), we can write x in terms of µ, to find optimal solution as µapproaches to 

zero. 
5.8. ILLUSTRATIVE EXAMPLES 

In this section we will see some examples of SOCP problems. 

Example 3.1 

Minimize 𝑥1 + 𝑥2 (3.24) 

Subject to:𝑥1 + 2𝑥2 = 2 



 

 

© Association of Academic Researchers and Faculties (AARF) 
A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories. 

 
Page | 66  

 

𝑥1,𝑥2 ≥  0 

Applying the barrier function 𝑔 𝑥 =  log𝑥𝑖
2
𝑖=1 , to the objective function we have: 

Minimize 𝑥1 + 𝑥2 − 𝜇(log 𝑥1 + log 𝑥2) 

Subject to: x1 + 2x2 = 2 

Where µ is barrier parameter. 

The lagrangian function for Eq. (3.29) is given by: 

L(x, y) = x1+ x2 − 𝜇(log 𝑥1 + log 𝑥2) − y(x1+ 2x2−2) (3.25) 

where 𝑦 is lagrange multiplier. Then xµ is optimal if and only if the derivatives of 

Eq.(3.30) with respect to both x and y are zero. That is, 

∇𝑥1
𝐿 = 1 −

𝜇

𝑥1
− 𝑦=0                                                (3.26a) 

∇𝑥2
𝐿 = 1 −

𝜇

𝑥2
− 𝑦=0                                                             (3.26b) 

          ∇𝑦𝐿 = 𝑥1 + 2𝑥2 = 2     (3.26c)

 Eq. (3.26a) and (3.26b) we have a relation between 𝑥1 and𝑥2such that : 
1

2
+

𝜇

2𝑥2
=
𝜇

𝑥1

Then substituting in Eq. (3.26c), we rewrite 𝑥1and 𝑥2in terms of µ as: 
 
 

𝑥1 =
(4𝜇 + 2) ± (4𝜇 + 2)2 − 16𝜇

2
 

𝑥2 =
−(4𝜇 − 2) ± (4𝜇 − 2)2 + 16𝜇

4
 

As µ approaches zero the primal optimal solution is (𝑥1𝜇 ,𝑥2𝜇 )=(0,1) with optimal 

valuesP
*
 = (𝑥1𝜇 ,𝑥2𝜇 )=1 

If we let 𝑠1 =
𝜇

𝑥1
 and 𝑠2 =

𝜇

𝑥1
 in Eq (3.31), then by rearranging the equation, we get the KKT 

condition: 

𝑥1 + 2𝑥2 = 2    (3.27a) 
𝑦 + 𝑠1=1           (3.27b) 

2𝑦 + 𝑠2 = 1    (3.27c) 

𝑥1𝑠1 = µ           (3.27d) 

𝑥2𝑠2 = µ           (3.27e)
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Note that the Eq. (3.32a) and (3.32b and 3.32c) are primal and dual feasibility condition for LP 

problem Eq. (3.29) and it’s dual, respectively. In addition, the Eq. (3.27d and 3.27e) can be 

interpreted as the complementary slackness conditions; thus as µ approach’s to zero, we get:

(𝑥1𝜇 ,𝑥2𝜇 ) = (0,1) and (𝑠1𝜇 ,𝑠2𝜇 ,𝑦𝜇 ) = (1/2, 0, 1/2) are primal and dual feasible solutions, 

respectively. Duality gap is zero. 

6. SUMMARY 

SOCPs are non-linear convex optimizations that include linear program (LP), quadratic 

program (QP) and quadratically constrained quadratic programs (QCQP) can all be formulated 

as SOCP problems. 

When the second order cone constraints have the standard Euclidean norm form, we have a 

SOCP in standard inequality form: 

Minimize 𝑐𝑇𝑥 

Subject to: 𝐴𝑖
𝑇𝑥 + 𝑐𝑖 ≤ 𝑏𝑖

𝑇𝑥 + 𝑑𝑖 , 𝑖 =  1, 2,… ,𝑞, 

Where 𝑥 ∈ 𝑅𝑛  is the optimization variable, and the problem parameters are 𝑐 ∈ 𝑅𝑛 ,𝐴𝑖 ∈

𝑅 𝑛 𝑖
−1 × 𝑛, 𝑏𝑖 ∈ 𝑅

𝑛 𝑖−1 , 𝑐𝑖 ∈ 𝑅
𝑛  and 𝑑𝑖 ∈  ℝ. 

And its dual is given by: 

Maximize - 𝑏𝑇𝑦𝑖 + 𝑑𝑖𝑠𝑖
𝑞
𝑖=1  

Subject to  𝐴𝑖𝑦𝑖 + 𝑐𝑖𝑠𝑖 = 𝑓
𝑞
𝑖=1  

where ‖𝑦𝑖‖ ≤ 𝑠𝑖 , 𝑖 = 1,… . , 𝑞 

When𝑛𝑖 = 1, the SOCP reduces to the linear program. Linear programming and second order 

cone programming are both linear objective and constraint functions. 

The QP and QCQP problems 

Minimize 𝑥𝑇𝑒𝑥 + 2𝑞0
𝑇𝑥 + 𝑟0 

Subject to:𝑎𝑖
𝑇𝑥 ≥ 𝑏𝑖 , 𝑖 = 1,… , 𝑞 

and 

Minimize f(x) = 𝑥𝑇𝑒0𝑥+ 2𝑞𝑇𝑥 + 𝑟0 

Subject to:𝑥𝑇𝑒𝑥 + 2𝑞𝑖
𝑇𝑥 + 𝑟𝑖 ≤ 0, 𝑖 = 1,… ,𝑞 are reformulated as: 

 Minimize t 

Subject to: 𝑒
1

2𝑥+ 𝑒  ≤ 𝑡,          
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𝑎𝑖
𝑇𝑥 ≥ 𝑏𝑖, 𝑖 =  1,… ,𝑞, 

 

LP and SOCP problems can be solved by logarithmic barrier method, first by finding the barrier 

function and then adding to the objective function as 

Minimize𝑐𝑇𝑥 − 𝜇 log(𝑐𝑖
𝑇𝑥 + 𝑑𝑖)

2 − ( 𝐴𝑖
𝑇𝑥 + 𝑏𝑖 )2 

Therefore, by applying first order necessary condition, we can approximate the optimal 

solution of theproblem. 
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