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Abstract 

The discrete semi group of initial-BVP for first order PDEs is obtainable in the present study. 

We derive an adapted problem posed on a bounded domain whose explanation is identical to 

the solution of the novel problem on a smaller bounded domain for the IVP.On the smaller 

bounded domain, numerical solution to the adapted problem converges to the solution to the 

original issue. We offer discrete semi group approximations for the IVP by decomposing it 

into two problems, each of which generates a semi group. 

Keywords: SemiGroup, Initial Value Problem 

Introduction 

In mathematics, in the field of partial differential equations, an initial value problem is a 

partial differential equation together with a specified value called the initial condition of the 

unknown function at a given point in the domain of the solution. In physics and other fields, 

addressing an initial value issue is a common part of modelling a system. 

Boundary value issues are often used to express difficulties involving the wave equation, 

such as the identification of the normal nodes. Problems involving boundary values are quite 

similar to those involving starting values. There are no conditions provided at the extremes of 

the independent variable in a boundary value problem, whereas all conditions are specified in 

an initial value problem at the same value of the variable in the equation. Both an initial value 

and a boundary value issue must be well-posed before they can be used in practical 

applications. First-order hyperbolic partial differential equations are well-documented. The 

numerical approximation approaches for initial value and initial boundary value issues have 

seen a great deal of development.  
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The stability of finite difference schemes for first order hyperbolic initial-boundary value 

problems with vector values functions in L2(IR+, IRN) was examined by Gottlieb et al 

(1987), Bo (1998), and Coulombel (2009). Discrete approximations to the initial-boundary 

value issue were investigated in 1988 by Warming and Beam. 

𝑈𝑡 = 𝑎𝑈𝑥 , 0 ≤ 𝑥 ≤ 𝐴, 𝑡 ≥ 0, 

U(x,0) = u(x), 0≤ 𝑥 ≤ 𝐴, 

U(A,t) = v(t), ≥ 0,  (1) 

The stability of finite difference schemes for first order hyperbolic initial-boundary value 

problems with vector values functions in L
2
(IR+, IRN) was examined by Gottlieb et al 

(1987). Discrete approximations to the initial-boundary value issue were investigated in 1988 

by Warming and Beam. 

𝑢𝑡 + 𝑎𝑢𝑥 = 0, 𝑥 ∈ 𝑅, 𝑡 ∈ 𝑅+ 

u(x,0) = 𝑢0 0 ,  x∈ 𝑅 (2) 

For limited discontinuous starting functions u0, for the development of numerical schemes for 

the beginning and boundary value issue, these research were motivated in which the initial 

𝑢𝑡 = 𝑎(𝑥)𝑢𝑥(𝑥) = 0, 𝑥 ∈ 𝑅+, 𝑡 ∈ 𝑅+ 

u(x,0) = 𝑢 𝑥 ,  x∈ 𝑅+ (3) 

condition is defined as some given function with the initial condition being defined as a(x) > 

0 for all values of x∈ 𝑅+. When waves travel in a homogeneous medium, Equation (3) serves 

as the model.  

The Initial-Boundary Value Issue (IBVP) is the name given to the second model problem. 

𝑈𝑡 = −𝑎𝑈𝑥 , 𝑥 ∈  0,1 , 𝑡 ∈ 𝑅+ 

𝑈 𝑥, 0 = 𝑢 𝑥 , 𝑥 ∈  0,1 , 

𝑈 0, 𝑡 = 𝑣 𝑡 , 𝑡 ∈ 𝑅+  (4) 

Assume that a > 0 and that a boundary condition v(t) is provided when x = 0 in this scenario. 

Information travels from left to right, thus u∈C[0, 1] and v∈C[0, C], which meet the 

compatibility criterion of u(0) = v. (0). 

When solving IVP (3) and IBVP (4), semigroup theory was employed extensively. The 
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initial-boundary value issues may now be solved in an elegant way thanks to semi group 

theory. 

Theorem. Let X be a Banach space with a norm of   . X For example, assume that D(A) 

is dense in X, a linear map, A: D(A) →X is the range of A: A: A: A: A: A: A: A: Think of the 

Banach spaces Xn as being Banach spaces with norms that are less than or equal to one. In 

addition, there are bounded linear operators that are Pn: XXn and En:Xn: Xn 

i.  𝑃𝑛 ≤C1,  𝐸𝑛 ≤C2 , with C1 and C2 are constants independent of n. 

ii.  𝑃𝑛𝑥 𝑛 →  𝑥  𝑎𝑠 𝑛 → ∞ 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑥 ∈ 𝑋. 

iii.  𝐸𝑛𝑃𝑛𝑥 − 𝑥 → 0 𝑎𝑠 𝑛 → ∞ 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑥 ∈ 𝑋. 

iv. 𝑃𝑛𝐸𝑛 =  𝐼𝑛 , 𝑤𝑒𝑟𝑒 𝐼𝑛  𝑖𝑠 𝑡𝑒 𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 𝑜𝑛 𝑋𝑛 . 

Let  F (τn)  be  a  sequence  of  bounded  linear  operators  from  Xn  into  Xn satisfying 

 𝐹(𝜏𝑛)𝑘 ≤ 1 (5) 

Besides, the bounded linear maps 

lim𝑛→∞ 𝐸𝑛𝐴𝑛𝑃𝑛𝑥 = 𝐴𝑥 (6) 

Moreover, if knτn → t as n → ∞, then 

lim𝑛→∞ 𝐹(𝜏𝑛)𝑘𝑛 𝑃𝑛𝑥 − 𝑃𝑛𝑆 𝑡 𝑥 𝑛 = 0 (7) 

In the sequel, the term solution refers to a generalized solution in an appropriate sense 

For0,1,...,k,thenotationiiisused.  

For x∈ 𝑅,  𝑥 = sup{𝑛 ∈ 𝑍: 𝑛 ≤ 𝑥} 

Exact Solution for the Initial Value Problem 

It is well known that the solution to (3.3) is given by 

u(x, t) = u(𝛽−1(𝑡 + 𝛽(𝑥)) 

where𝛽 𝑥 =   
𝑑𝜉

𝑎(𝜉)

𝑥

0
 

On a bounded domain, the goal was to numerically solve (3) using the non-bounded solution 

u(x, t) of (3), which was not necessarily constrained. This conclusion is made possible by the 

following theorem. 

Theorem. Assume that a ∈C[0, ∞) and a(x) > 0 for all x ∈ IR
+
. Let M > 0 and T > 0. Define 

aM : [0, M ] → IR
+
 as 
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aM(x) =a(x), 0≤ 𝑥 ≤ 𝑀 −
1

𝑀
 

           =a(M-1/M) 𝑀(𝑀 − 𝑥), 𝑀 − 1/𝑀 ≤ 𝑥 ≤ 𝑀 

and let f ∈ C[0, M]. The solution to the problem 

𝜕𝑉

𝜕𝑡
= 𝑎𝑀 𝑥 

𝜕𝑉

𝜕𝑥
, 0 ≤ 𝑡 ≤ 𝑇, 0 ≤ 𝑥 ≤ 𝑀 

V(x,0) = f(x), 0≤ 𝑥 ≤ 𝑀, 

V(M,t) = f(M) (8) 

exists, unique and is given by 

V(x,t) = f(𝛽𝑀
−1[𝑀𝑖𝑛 𝑡 + 𝛽𝑀 𝑥 , 𝛽𝑀 𝑀  ], where 

𝛽𝑀 𝑥 =   
𝑑𝜉

𝑎 𝜉 

𝑥

0

, 0 ≤ 𝑥 ≤ 𝑀 −
1

𝑀
, 

            =  
𝑑𝜉

𝑎𝜉
+  

𝑑𝜉

𝛼(𝑀−
1

𝑀
) 𝑀(𝑀−𝑥)

𝑥

𝑀−1/𝑀
, 𝑀 −

1

𝑀
≤ 𝑥 ≤ 𝑀

𝑀−1/𝑀

0
 

Further, 

𝑆𝑡𝑓 𝑥 =f(𝛽𝑀
−1[𝑀𝑖𝑛 𝑡 + 𝛽𝑀 𝑥 , 𝛽𝑀 𝑀   

defines a contraction semigroup on C[0, M] whose generator is given by 

D(A) = [g∈ 𝐶 0, 𝑀 : 𝑔′ ∈ 𝐶 0, 𝑀 𝑎𝑛𝑑 lim𝑥→𝑀 𝑎𝑀(𝑥)𝑔′𝑥) = 0} 

And 

Ag(x) =𝑎𝑀(𝑥)𝑔′𝑥 

Ag(M) = 0 

Further, choosing M > N such that 

𝑠𝑢𝑝𝑡∈ 0,𝑇 ,𝑥∈[0,𝑁] 𝑡 + 𝛽 𝑥  < 𝑏  𝑀 −
1

𝑀
 , 

V(x,t) = u(x,t), (x,t)∈  0, 𝑁 ∗ [0, 𝑇] (9) 
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provided f ∈ C[0, M] is the restriction of u to [0, M]. 

Proof: Define for t ≥ 0, Tt : [0, M] → [0, M] as 

Stf(x) = 𝛽𝑀
−1[𝑀𝑖𝑛 𝑡 + 𝛽𝑀 𝑥 , 𝛽𝑀 𝑀   

Ts*Ttx = 𝛽𝑀
−1[𝑀𝑖𝑛 𝑠 + 𝛽𝑀 𝑇𝑡𝑥 , 𝛽𝑀 𝑀   

            = 𝛽𝑀
−1[𝑀𝑖𝑛 𝑠 + 𝛽𝑀 𝐵𝑀

−1[𝑀𝑖𝑛(𝑡 + 𝛽𝑀(𝑥) , 𝛽𝑀 𝑀 ] , 𝛽𝑀 𝑀 )] 

            =𝛽𝑀
−1[𝑀𝑖𝑛 𝑠 + 𝑡 + 𝛽𝑀 𝑥 , 𝛽𝑀 𝑀  ] 

            =Ts+tx 

Also, it is easy to say that St is a semigroup, since Stf(x) = f(Ttx).  

It is obvious that kStfk ≤ kfk and hence St is a contraction semigroup.  

Now, by Hille-Yosida Theorem, if B is the generator of St then 

(𝐼 − 𝐵)−1 𝑥 =  𝑒−𝑡𝑆𝑡 𝑥 𝑑𝑡
∞

0

 

                          =  𝑒𝛽𝑀 (𝑥)−𝛽𝑀 (𝑦) (𝑦)

𝑎𝑀 (𝑦)
𝑑𝑦 + (𝑁)𝑒𝛽𝑀 (𝑥)−𝛽𝑀 (𝑦)𝑀

𝑥
 

Where y = 𝛽𝑀
−1(𝑡 + 𝛽𝑀 𝑥 ) 

Now, consider the differential equation 

f(x) -𝑎𝑀 𝑥 𝑓 ′ 𝑥 =  𝑥 , 𝑥 ∈  0, 𝑀 , 

f(M) = h(M) 

which is equivalent to 

f(x) - a(x)𝑓 ′ 𝑥 =  𝑥 , 𝑥 ∈  0, 𝑀 , 

lim
𝑥→𝑀

a(x)𝑓 ′ 𝑥 = 0 

for every h ∈ X, there is a unique solution f ∈ D(A) to the above differential equation which 

is given by 

f(x) =  𝑒𝛽𝑀 (𝑥)−𝛽𝑀 (𝑦) (𝑦)

𝑎𝑀 (𝑦)
𝑑𝑦 + (𝑁)𝑒𝛽𝑀 (𝑥)−𝛽𝑀 (𝑦)𝑀

𝑥
 

Hence it can be shown for the operators A and B, (I − A) 
−1

 = (I − B) 
−1

 . From this, one can 

easily conclude that D(A) = D(B) and for all g ∈ D(A), Bg = Ag.  

As β is a strictly increasing function by (9), for t∈ [0, T] and x ∈ [0, N] then 

x≤ 𝛽−1 𝑡 + 𝛽 𝑥  < 𝑀 − 1/𝑀 

Hence 

𝛽𝛽−1 𝑡 + 𝛽 𝑥  = 𝛽𝑀𝛽𝑀
−1(𝑡 + 𝛽𝑀 𝑥 ) 

From this, it is concluded that Stf(x) = V (x, t) = u(x, t) for all x ∈ [0, N] and t ∈ [0, T]. 
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Convergent Numerical Scheme for the Initial Value Problem and Initial-boundary 

Value Problem 

First and boundary value convergent numerical schemes are explained in this section. It is 

possible to solve the initial value issue by posing it on a smaller bounding box, and then 

solving it on a larger bounding box with the same answer. The numerical solution to the 

modified problem converges to the solution of the original issue in the smaller constrained 

region. The discrete semigroup approximations for the initial-boundary value issue may be 

presented by splitting it into two separate problems, each of which yields a semigroup. 

A Convergent Numerical Scheme for the IVP 

Using the initial value problem (3), one may get M > N and an initial value problem posed on 

[0, M] [0, T] whose solution precisely matches the solution of (3) on [0, T]. On [0, M] [0, T], 

one builds a finite difference scheme that converges to the solution of the issue given in (3.3) 

on [0, N] [0, T]. 

This is made possible by the following theorem. 

Theorem: Let, X is C[0, M] and A is the same as in Assume Xn = R
n+1

, where n is the 

number of items in Xn. The supremum norm is used to standardise the spaces X and Xn. We'll 

get to it in a moment, 

Pn : X → Xn as (Pnf )i = f (iM/n), i = 0, 1, . . . , n.  

En :Xn → X as 

En(α) is the piecewise linear function with En(α)(iM/n) = αi.  

Let 

𝜏𝑛 =
1

2𝑛𝑠𝑢𝑝𝑥∈[0,𝑀] 𝑎(𝑥) 
 

Define an operator F(τn) : Xn → Xn as 

(F(𝜏𝑛 )𝛼)𝑖 =  1 − 𝑛𝜏𝑛𝑎𝑀  
𝑖𝑀

𝑛
  𝛼𝑖 + 𝑛𝜏𝑛𝑎𝑀  

𝑖𝑀

𝑛
 𝛼𝑖+1, 𝑖 = 0,1, … , 𝑛 − 1 

                = 𝛼𝑛 , 𝑖 = 𝑛 

Choosing kn = t/tn, it can be shown that 
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 𝐹( 𝜏𝑛 
𝑘𝑛 𝑃𝑛𝑓 − 𝑃𝑛𝑆 𝑡 𝑓 𝑛 → 0 𝑎𝑠 𝑛 → ∞ 

 In particular, fixing t ∈ [0, T ] and x ∈ [0, N ], 

lim
𝑛→∞

𝐹(𝜏𝑛)𝑘𝑛 𝑃𝑛𝑓   
𝑛𝑥

𝑀
  = 𝑢(𝑥, 𝑡) 

where u(x, t) is the solution to (3.3). 

A Convergent Numerical Scheme for the IBVP 

The theory of semigroups cannot be directly applied to an initial-boundary value issue. There 

are discrete semigroups that can approach this semigroup, however it can be broken down 

into two difficulties. 

This conclusion is made possible by the following theorem. 

Theorem. Let X and Y  be as in above Theorem. Take Xn = R
n
 and Yn = R

n+1
. Define the 

following quantities 

𝜏𝑛 =  
1

𝑛 2𝑎 + 1 ,
 

𝑘𝑛 = [𝑛𝑡 2𝑎 + 1 , 

b = 1/a 

ɳ𝑛 =  
1

𝑛 2𝑏 + 1 ,
 

And  

𝜉𝑛 = [𝑛𝑥 2𝑏 + 1 , 

Further,  define  Pn  :  X  → Xn  as  [Pnf ]i  =  f (i/n),   i  =  1, . . . , n  and En : Xn → X as En(α) 

being the piece-wise linear function with (En(α))(0) = 0 and (En(α)(i/n) = αi, i = 1, 2, . . . , n 

and the operator 

F (τn) :Xn → Xn 

As 

(F(𝜏𝑛)𝛼𝑖 =  1 −
𝑎

[2𝑎+1]
 𝛼𝑖 +

𝑎

[2𝑎+1]
𝛼𝑖−1, 𝑖 = 2,3, … . ,4 
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                =  1 −
𝑎

[2𝑎+1]
 𝛼𝑖 , 𝑖 = 1 

Besides, take Qn : Y → Yn as  

[Qnf]l= f(lT/n), l = 0, 1, . . . , n  

andHn : Yn → Y as  

Hn(α) being the piece-wise linear function with (Hn(α)(lT/n) = αl , l = 0, 1, 2, . . . , n.  

Define an operator 

G(ɳ𝑛 ):𝑌𝑛 → 𝑌𝑛  

(G(ɳ𝑛)𝛼)𝑙 =  1 −
𝑎

[2𝑏+1]
 𝛼𝑙 +

𝑎

[2𝑏+1]
𝛼𝑙−1 , 𝑙 = 2,3, … . ,4 

                = 𝛼0, 𝑙 = 0 

Then for the initial value problem (4), 

log𝑛→∞(𝐹 𝜏𝑛 
𝑘𝑛 )𝑃𝑛𝑢0)( 𝑛𝑥 ) +  𝐺 ɳ𝑛 

𝜉𝑛𝑄𝑛𝑣   
𝑛𝑡

𝑇
  = 𝑈(𝑥, 𝑡) 

for fixed x and t. 

Conclusion:  

The start and initial-boundary value issue for first-order PDEs in unbounded domains was 

addressed in this paper. Exact solutions for beginning and initial-boundary value problems 

were sought in the first half of this study, while the second part of this study was focused on 

the convergence of numerical schemes for IVPs and IBVPs.Finally, the research team 

presented the following methods for solving infinite-delay differential equations. An infinite-

delay neutral delay differential equation has been solved numerically and its asymptotic 

stability has been explored in the first phase. PDEs with infinite delay were semi-discretized 

and discrete semigroup approximation for first order PDEs in unbounded domains were 

produced in the second phase of the study programmer. 
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