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Abstract : -  

The flow of a viscous incompressible electrically conducting fluid in a circular tube filled 

with a medium of variable permeability has been considered.  The permeability of the porous 

medium is exponentially decreasing in the radial direction. A transverse static magnetic field 

is applied and problem has been modeled with Brinkman Model. The modeled problem has 

been attempted to solved by Adomian Decomposition method.  The effect of various 

parameters on wall shear stress, volume rate of flow and resistivity to flow has been 

computed and presented through the graphs.  

Keywords: Magneto hydrodynamics,  porous medium, Adomian Decomposition.  

Introduction :- Song and Wang (2013) dealt that in this examination, we present a latest 

advanced Adomian decomposition procedure, that establishes a confluence- restraint 

parameter into the Adomian decomposition procedure and introduces a latest insistent 

method. It shows that the proposed procedure is authentic, valid, simple to execute from a 

mathematical stance. It can be engaged to acquire profitably systematic indefinite solution of 

fractional differential equation. Prasad and Kumar (2011) considered that through a porous 

medium, an analytical solution of the flow of a hydromagnetic fluid between permeable beds 

is acquired and analyzed. It is observed that the fluid is under an exponential decaying 

pressure gradient and the stable magnetic field in a direction normal to the flow saturated 

porous medium . 

Eldesoky (2012) analized that unsteady pulsatile flow of blood through porous medium in an 

artery under the impact of periodic body acceleration and slip condition. With the Laplace 

transform, mathematical solution of the equation of motion is acquired. The mathematical 

definite expressions of axial velocity, wall shear stress and fluid acceleration are given. 

 

International Research Journal of Mathematics, Engineering and IT 

ISSN: (2349-0322)      

Association of Academic Researchers and Faculties (AARF) 

Impact Factor- 7.132 Volume 10, Issue 02, February 2023 

Website- www.aarf.asia, Email : editoraarf@gmail.com 

http://www.aarf.asia/
mailto:editoraarf@gmail.com


 

© Association of Academic Researchers and Faculties (AARF) 
A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories. 

 

Page | 6  

Herzallah and Gepreel (2012) dealt that in this study we operate the adomian decomposition 

procedure, by establishing the fractional derivatives in the sight of Laputo, to build the 

indefinite solutions for the cubic non linear fractional Schordinger equation with time and 

space fractional derivatives. Tanveer (2016) considering blood as a couple stress, fluid, the 

mathematical model for steady flow of blood through a porous medium in a rigid circular 

tube under the influence of periodic body acceleration and magnetic field is studied. An exact 

solution in the Bessel's Fourier series form by the finite Hankel transform techniques, the 

physiological parameters that affect human body such as axial velocity shear stress and the 

flow rate have been computed analytically Velocity of blood decreases with increase in 

magnetic field, whereas increases with increase in permeability of the porous media and body 

acceleration. So graphically effects of shear stress and other parameters are shown. 

Formulation of the problem: Let us consider a steady, viscous, axially symmetric, 

incompressible fluid in a circular tube of radius R.  A static transverse magnetic field of 

uniform strength has been applied.  Considering cylindrical polar co-ordinates(r, θ, z), where 

z-axis coincide with the axis of tube, then Brinkman momentum equation and boundary 

conditions are:       
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 where       u
’
, µ and σ are the axial velocity, viscosity  and magnetic conductivity of the fluid, 

K the permeability of the porous medium, B0 the electromagnetic induction, 
z

p
J




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constant pressure gradient, µeff the effective viscosity.  

Introducing following non dimensional parameters 
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Case-I: Constant permeability (K=constant) 

  The equation of motion in dimensionless form is defined by  

  
M

u
M

Hs

dr

du

rdr

ud 1221

2

2














 
                                                     … (5) 

The corresponding boundary conditions are 
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Method of solution : 

Employing Adomian Decomposition Method, the equation (5) reduced to  
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Applying 
1
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L  to both sides of the equation (8) and using the boundary condition (7), we obtain  
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where A=u(0) is to be determined from the boundary condition (6). As usual in Adomian  Decomposition Method ,the 

solution of the equation (10) is approximated as an infinite series 
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Case-II : Variable permeability defined by  
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The equation of motion (1) reduces into  
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Invoking following dimensionless parameters 
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alongwith the  dimensionless parameters defined in (4), the equation (16) reduces to 
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Using Adomian Decomposition Method the solution of  the equation (19) is obtained and given by  
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Wall Shear Stess :  The dimensionless wall shear stress is defined by  
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Volume rate of flow: The dimensionless volume rate of flow Q is defined by 
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Resistivity of flow: The Resistivity  of the flow is given by 
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Variation of Resistivity with M at s=2.0,H=1.0
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Hence  there is a significant effect of non dimensional parameters on hemodynamic 

parameters. 
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