

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories.

GE-International Journal of Engineering Research (GE-IJER) ISSN: (2321-1717)

37 | P a g e

GE-International Journal of Engineering Research
Vol. 4, Issue 8, August 2016 IF- 4.721 ISSN: (2321-1717)
© Associated Asia Research Foundation (AARF) Publication

Website: www.aarf.asia Email : editor@aarf.asia , editoraarf@gmail.com

IMPORTANCE OF PRIORITIZATION IN REGRESSION TESTING

Aman Hooda
1
,

Dr Anil Kumar

2

1
 Department of Computer Science & engineering, B.M University

Rohtak, Haryana, India.
2

Department of Computer Science & engineering, V.C.E, Rohtak, Haryana, India.

 ABSTRACT

Regression testing is a crucial activity of software

maintenance phase and test case prioritization is a key

strategy that has the potential to save time and money

by identifying errors early, saving resources and

delivering a more defect free product. Unfortunately it

is often less formal and rigorous than it should be. The

general approach is not to test everything a little, but

to concentrate on high risk areas and the worst areas.

In recent years, researchers have intensively focused

on investigating test case prioritization which aims to

reorder test cases to increase the rate of fault detection

during regression testing. In this paper, the

significance of prioritization in regression testing is

highlighted.

Keywords: Software maintenance, Regression testing,

Test case prioritization, Fault detection.

1. Introduction

Testing is not something that happens once and is

then forgotten. Testing is an iterative and umbrella

activity. There is never enough time or resources to

test everything or to do exhaustive testing. Tests

may be needed to be used and reused many times

over [1][3]. This potential needs to be considered

when tests are being designed. Testing is context

dependent which basically means that the way you

test an e-commerce site will be different from the

way you test a commercial off the shelf application.

We need an optimal amount of testing based on the

risk assessment of the application [2]. Absence of

Error is a Fallacy i.e. finding and fixing defects does

not help if the system build is unusable and does not

fulfill the user‟s needs & requirements. Whenever a

change is done to software, it must be tested in

isolation and as part of the software once the

integration has taken place. If the proposed system

change is being tested in isolation, it is likely that

stubs and drivers would probably to be used to test

it. When the change is subsequently incorporated

into the full system, a regression test pack must be

framed and executed to exercise that no new

problems have been introduced and no existing

problems have been uncovered as a result of

change.

2. Regression Testing

Regression testing is validation testing which

provides a firm validation of each change to an

application under development or being modified.

Each time a defect is being removed; there exists an

element of uncertainty about the reliability and

functionality of an application that went to the point

of failure or replacement [2][3]. The essence of

regression testing is exposure of problems that

shouldn't be there, either because they were

exterminated before or they weren't in the product

the last time(s) it was tested.

Regression testing is probably the selective retesting

of an application or the system that has been

modified to insure that no previously working

components, functions or features fail as result of

the repairs[2][3][4]. It is important to understand

that regression testing doesn‟t test that a specific

defect has been fixed; it verifies that the rest of the

application up to the point of repair was not

adversely affected by the fix [2][4]. The sole

purpose of regression testing is to determine if the

http://www.aarf.asia/
mailto:editor@aarf.asia
mailto:editoraarf@gmail.com

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories.

GE-International Journal of Engineering Research (GE-IJER) ISSN: (2321-1717)

38 | P a g e

system has “regressed” the existing features

following a change.

Typically, regression testing can be explained

mathematically as [6]. Let P be a procedure or

program, let P′ be a modified version of P and let T be

a test suite for P. A typical regression test proceeds as

follows:

 Select T′⊆ T, a set of test cases to execute

on P′.

 Test P′ with T′. Establish P′‟s correctness

with respect to T′.

 If necessary, create T″, a set of new

functional or structural test cases for P′.

 Test P′ with T″, establishing P′‟s

correctness with respect to T″.

 Create T″′, a new test suite and test history

for P′, from T, T′and T″.

2.1 Challenges in Regression Testing

 Following are the major testing problems for

doing regression testing:

 With successive regression runs, test suites

become fairly large. Due to time and

budget constraints, the entire regression

test suite cannot be executed.

 Minimizing test suite while achieving

maximum test coverage remains a

challenge.

 Determination of frequency of Regression

Tests, i.e., after every modification or

every build update or after a bunch of bug

fixes, is a challenge to determine when the

next regression may occur.

2.2 Generation of regression test suite

Maintenance may be required to bring a system in

line with changes to regulations or enhancements.

Tests must be scheduled. If at any time during

software testing life cycle (STLC), a defect is

highlighted, it will be needed to be re-tested to

prove the fix [4]. Other test in related areas should

also be re-run to ensure that fixing one problem has

not caused previously working code to malfunction

as it is quite possible that fixing one problem may

reveal other, errors that were nor apparent.

Adding new features adds up to existing test case

pool thus increasing the cost and time of regression

testing and this directly impacts the schedule and

delivery of the product. Tests therefore need to be

sequenced in an order to ensure that the best testing

possible can be performed in the available

circumstances. Identification and sequencing of

those areas that present the maximum risk to the

successful use of the software and to ensure that

sufficient number of test to verify this area have

been decided[3][4].

Use cases are probably the most effective way to

create a regression test suite for an application-

 Find out from the requirement specifications

document of the system and decide what

functional requirements are?

 Find out from the business what are the

major processes in the application?

 Find out from the users how they use the

application to plan test the cover that use?

The process of generating regression test suite can

be depicted as following:

Fig.1 Regression test suite generation.

2.3 Factors affecting the size of regression test suite

There are many factors deciding the size of regression

test suite but most determinant are-

 2.3.1 Mission-critical: The critical elements of the

system must be tested as much as possible in the

time available as the effect of faults may crash the

system and even prevent the business from carrying

out its core tasks.

2.3.2 Highest risk: Testing is risk management and

so is regression testing. Therefore regression testing

focus on those test cases which ensure that when the

system goes live, there is least risk of it containing

any catastrophic faults.

 2.3.3 Greatest usage: The basic functional

hierarchy must be checked to ensure cross reference

to the requirements.

 2.3.4 Most complex: Enough test cases to verify

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories.

GE-International Journal of Engineering Research (GE-IJER) ISSN: (2321-1717)

39 | P a g e

technical criticality of the system must be included

into regression test suite.

 2.3.5 Most dependencies: Identify all software

features and combinations of features to be tested

and include corresponding test cases in regression

test suite.

 2.3.6 Least understood: Summarize the software

items and software features to be tested. The need

for each item and its history may also be included

 2.3.7 Least tested: Identify all the features and

significant combinations of features that will not be

tested and the reasons for overlooking.

3. Prioritization

Often all other activities before test execution are

delayed due to inevitable reasons. This results in

carrying out testing under severe pressure. It is not

possible to skip the testing phase, nor to delay the

delivery or to test badly. There is a relationship

between the resources used in testing and the risk

after testing. Any system that is released without

having been exhaustively tested runs the risk of

containing faults. The solution to this uncertainty is

Prioritization strategy in order to do the best

possible job with limited resources. Test case

prioritization techniques are used to improve the

cost-effectiveness of regression testing, order test

cases in such a way that those cases that are

expected to outperform others in detecting software

faults are run earlier in the testing phase [5].

The test case prioritization is to order the test cases

in a test suite so that faults can be revealed as early

as possible during testing. The key idea behind

prioritization is that test cases that are more likely to

reveal faults should be run before test cases that are

less likely to reveal faults. The challenge of test case

prioritization is to reduce the number of test cases,

while maintaining quality and customer satisfaction

when faced with the challenge of testing complex

applications with limited resources[4][5].

The purpose of prioritization is to uncover the

largest number and most severe defects as early in

the software testing or regression testing process as

possible. These techniques are discussed and

formally described as -

 Test Suite Minimization (TSM)/ Test Suite

Reduction (TSR) - These techniques

remove redundant test cases permanently

to reduce the size of test suite [5][6].

 Test Case Selection (TCS) - These

techniques select some of the test cases and

focus on the ones that test the changed

parts of the software. Contrary to TSR

technique, TCS does not remove test cases

but selects test cases that are related to the

changed portion of the source code [5][6].

 Test Case Prioritization- This type of

technique identifies the efficient ordering

of test cases to maximize certain properties

such as rate of fault detection or coverage

rate [5][6].

3.1 Factors Affecting Prioritization

There are a wide range of factors that must be

considered while determining the priority of the

tests. For each system these factors will need to

be given a ranking to further assist with the

prioritization.

3.1.1 Severity: This factor considers the risk the

organization will be exposed to if a particular

function fails. The failure of that element will

leave the organization „exposed‟ to failure either

through loss of customer or.

3.1.2 Customer Requirements: Having addressed

the basic business critical elements, next

preference must be given to customer

requirements. Ensure these elements are tested

properly.

3.1.3 Visibility of Requirements: Requirements

must be self-explanatory, complete and crisp.

Requirements tends to be volatile

3.1.4 Frequency of Change: Figure out the code

that is subjected to frequent change. The more

often a specification is changed, the more often

corresponding code will change.

3.1.5 Technical Criticality: There may be

instances where the technical infrastructure is

critical especially where many different platforms

are used.

3.1.6 Code Complexity: Code which is complex

to develop or maintain will likely be equally

complex to verify as well. The same applies to

complex hardware and networking

configurations.

3.1.7 Probability: There is a strong likelihood of

a fault occurring in a particular function. Then

some robust tests should be created for that part

of the system.

3.1.8 Visibility of Failures: An error may not be

severe in terms of its impact on the process but is

highly visible and frequent and will be regarded

in poor light.

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories.

GE-International Journal of Engineering Research (GE-IJER) ISSN: (2321-1717)

40 | P a g e

3.1.9 Priority of requirements: What functionality

is crucial to the success of the system?

3.1.10 Time and other resources: Time and

budget are two major issues that affect the

definition of priority. Time narrows the definition

of priority as it grows hence emphasizing on of

testing only critical things. The varied type of

resources available broadens the definition of

priority influencing the scope of priorities.

3.2 SDLC Phase wise factors affecting

Prioritization

Due to the increasing complexity of today‟s

software intensive systems, the number of test

cases in a software development project increases

foe an effective validation & verification process

and the time allocated to execute the regression

tests decreases because of the marketing pressures

[5][7].The order in which the test cases of a test

suite are executed has an influence on the rate at

which faults can be detected [8]. By optimizing

the execution order of test cases, test case

prioritization techniques can effectively improve

the efficiency of software testing [9].

Testing is not just a phase that is planned and

executed after coding and implementation; rather

it is an umbrella activity which is applied to all

other phases of software development life cycle

because the cost of correcting an error in later

phases is quite high.

Prioritization can be done at the test generation

time, thus removing the need for test suite post

processing [10]. Furthermore when a test suite is

reused many times for regression testing,

information about the version changes [11] can be

incorporated and histories [12] of detected faults

can be included. Various factors of importance, in

each phase of software development life cycle

are-

3.2.1 Requirement Phase: In this phase, the

requirements are discovered, articulated, revealed

or derived from the stake holders and users. This

is perhaps the most critical most difficult most

error-prone and most communication intensive

aspect of software development [3][4]. More than

90-95% of the requirement gathering should be

completed in the initial stage while balance 5% is

completed during the development life cycle.

Key factors are-

Table 1: Requirement phase prioritization factors

Name of the

factor

Description

Customer

assigned priority

(RCA)

Measure of the importance

assigned by customer to

each requirement.

Completeness

(RC)

Measure of total no. of

requirement covered by

each test case in a test suite.

Fault proneness

(PFP)

Subjective measure based

on historic data of

requirement failure as

reported by the customer.

Ambiguous

requirement(RAR)

Subjective measure of one

specification representing

one requirement only.

Requirement

Volatility(RV)

Based on how many times a

particular requirement is

changed in development

cycle.

3.2.2 Analysis & Design Phase: After specifying

and analyzing all the requirements, the process of

software design begins. While the requirements

specification activity is entirely in the problem

domain, design is the first step in moving from

problem domain to solution domain each [1][4].

Design is the only way by which we can

accurately translate the customer‟s requirements

into a finished software product or system. Key

factors are-

 Table 2: Analysis & Design phase prioritization factors

Name of the factor Description

No of functionality

associated with a

module(DFN)

Quantitative measure of

no. of functionality

satisfied by each

module.

Performance

requirement met by a

module(DP)

Measure of performance

criteria satisfied by each

module.

Modularity(DM) Measure of justification

of modularity done for

the system.

Associations(DA) Measure of cohesions

and coupling in each

module.

Interface

interactions(DI)

Measure of feasible

interfaces among

modules.

3.2.3 Coding and Implementation: In this phase,

the design of the system produced during the

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories.

GE-International Journal of Engineering Research (GE-IJER) ISSN: (2321-1717)

41 | P a g e

design phase is translated into the code in a given

programming language, which can be executed by

a computer to achieve a function [1][3]. All

design contains hierarchies to manage

complexity. So the translation from design to

code is implemented either in top-down or

bottom-up approach. Key factors are-

 Table 3: Coding & Implementation phase prioritization

factors

Name of the

factor

Description

Developer

perceived

implementation

complexity(CIC)

Subjective measure of the

complexity anticipated by the

development team in

implementing the need and it

is evaluated initially.

Hardware

requirement(CHR)

Decides about type of

hardware needed for the

system.

3.2.4 Testing: Once the code is generated, the program

testing begins. Different testing methodologies are

available to unravel the bugs that were committed

during the previous phases [3][4]. Different testing

tools and methodologies are already available. Key

factors are-

Table 4: Testing phase prioritization factors

Name of the factor Description

No. of requirements

associated with a

test case(VR)

Numeric measure of no.

of requirement verified

by individual test case in

a test suite.

Test case

Complexity(VTC)

Effort needed to execute

the test cases.

Execution time(VET) Represents total time

required for the

execution of test suite.

Module size(VMS) Represents total no. of

lines of code in a

module. It is required for

determining execution

time of a particular test

case for a particular

module.

Test impact(VTI) Based on impact on test

cases during the testing

of software. This factor

helps to assess the

importance of test cases

to determine if test cases

are not executed.

3.2.5 Maintenance and Support: Every time after

making changes in the existing working code, a suite

of test case have to be executed to ensure that changes

are not breaking the working features and has not

introduced any bugs in the software [2]. Regression

testing is a type of testing carried out to ensure that

changes made in fixes or any enhancements are not

impacting the previously working functionality

[2][3][4]. It is executed after enhancements or defect

fixes in the software or its environment. Key factors

are-

Table 5: Maintenance & Support phase prioritizing factors

Name of the

factor

Description

Reusable Test

Cases(RRU)

Test cases are used to test

unmodified parts of the

specification and their

corresponding unmodified

program constructs

Retestable Test

Cases(RRT):

Test cases are used to test

unmodified parts of the

specification and their

corresponding unmodified

program constructs

New-Structural

Test Cases(RT):

Includes structural based

test cases that verify the

modified program

constructs

New-

Specification

Test Cases(Rs)

Includes test cases based

on specification only

3.3 Making Prioritization more effective

For attaining improved rate of fault detection and

code coverage during regression testing, each

limiting factor must be accessed properly; their

affect on application must be thoroughly looked;

dividing them into different domains and then

prioritizing factors in each domain separately as

well prioritize domains as well. Various domains

are represented diagrammatically as-

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories.

GE-International Journal of Engineering Research (GE-IJER) ISSN: (2321-1717)

42 | P a g e

Figure 2: Prioritizing domains

 3.3.1 Understanding the basic quality criteria:

software though intangible, exists embedded in the

larger more complex business world and must be

considered in that context. The definition of quality

can dramatically improve the technical

characteristics of a software product. Besides the

technical characteristics, the quality pursuit must

address the company long term competitive and

financial performance. Thus, the real issue emerges

that which quality will produce the best financial

performance.

3.3.2 Identifying the most important and worst parts

of the system: Everything can never be tested as we

can always find more to test. We have to make

decisions about what to test and what not to test,

what to do more or less. A way to reduce the test

load if finding the most important functional areas

and product properties. The risk associated with

each area will help identifying the worst areas of the

product as well. The general goal is to find the

worst defect first and to find as many defects as

possible.

3.3.3 Determining the potential damage: After

identifying the most important and worst parts of a

system, the potential damage that may occur due to

presence of defects or failure may be calculated. A

failure may be catastrophic, damaging, hindering or

annoying.

3.3.4 Identifying the difficulty levels: The most

natural way used to sequence the test cases involve

moving from simple and easy test case to difficult

and complicated ones. This scenario is commonly

applied where complicated problems can be

expected. It is preferred to execute comparatively

simpler test cases first to narrow down the problem.

3.3.5 Relative Dependencies: There are certain tests

that can be run only after other tests have been

executed. Such dependencies must be identified and

considered while deciding the order.

3.3.6 Timing of Defect detections: There exist some

defects which surface only after other bugs have

been found and corrected such as bugs appearing

during integration testing.

3.3.7 Combining of test cases: Some test cases are

verifying same features. Such redundant test cases

must be looked for and removed to limit the size of

test case suite.

4 Conclusions

An improved rate of fault detection and code

coverage during regression testing can let software

engineers begin their debugging activities earlier than

might otherwise be possible, speeding the release of

the software. Efficiency and quality are best served

by approaching regression testing activities in a

structured and scientific way, instead of the, usual

„monkey-testing‟. The effectiveness of regression

testing effort can be maximized by selection of

appropriate testing strategy and optimization method

to support the testing process. Test case prioritization

techniques improve the cost-effectiveness of

regression testing by increasing the probability that if

testing ends prematurely, important test cases have

been run. Prioritize the test cases depending on

business impact, critical & frequently used

functionalities. Selection of test cases based on

priority will greatly reduce the regression test suite.

The net result would be an increase in the produced

software quality and a decrease in costs, both of

which can only be beneficial to a software

development organization. Thus making sure that,

whenever you stop testing, you have done the best

testing in the time available.

References

[1] Sommerville Ian, “Software Engineering,” 6
th

 Ed.,

Pearson Education, 2004

[2] Roger S Pressman, “Software Engineering,” 5
th

Ed, Mc Graw Hill, 2001.

[3] P. Jalote , “An Integrated Approach to Software

Engineering,” 2
nd

 Ed., Narosa publication, 2002.

[4] R. Mall, “Fundamentals of Software Engineering,”

3
rd

 Ed., PHI Learning Private Ltd., 2009.

[5] C. Catal, D. Mishra, “ Test case prioritization: a

systemic mapping study,” Software Quality

Journal, vol. 21, 2013 pp. 445-478.

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories.

GE-International Journal of Engineering Research (GE-IJER) ISSN: (2321-1717)

43 | P a g e

[6] J.M Kim, A. Porter, “A History-Based Test

Prioritization Technique for Regression Testing in

Resource Constrained Environments,” ICSE, vol.

24, pp 364-373, 2002.

[7] C. Catal, “ The ten best practices for test case

prioritization”, ICIST, CCIS 319, pp. 452-459,

2012.

[8] A. Srivastava, J. Thiagarajan,”Effectively

Prioritizing Tests in Development

Environment,”,Proc. ACM International

Symposium onSoftware Testing and Analysis,

ISSTA-02, pp. 97- 106, 2002.

[9] W. Zhang, B. Wei, H. Du, “ Test case

prioritization based on Genetic Algorithm and test-

points coverage,” Springer International

publishing, ICA3PP, LNCS 8630, pp. 644-

654,2014.

[10] Fraser, Gordan, and Franz Wotawa, “ Test-case

prioritization with model-checkers,” In 25
th

conference on IASTED international, 2007.

[11] B. Korel, G. Koutsogiannakis, L. Tahat, "Model-

Based Test Prioritization Heuristic Methods and

Their Evaluation”, 3rd ACM Workshop on

Advances in Model Based Testing, A-MOST,

2007.

[12] G. Rothermel, R. Untch, C. Chu, M.

Harrold,”Test Case Prioritization: An Empirical

Study,”, Proc. IEEE International Conference on

Software Maintenance, pp. 179-188, 1999.

[13] H. Srikanth, L. Williams, and J. Osborne.System

test case prioritization of new and regression test

cases., In Proceedings of the 4
th

International

Symposium on Empirical Software

Engineering(ISESE), pages 62-71. IEEE Computer

Society, November 2005.

[14] B. Korel, L. Tahat, M. Harman, ”Test

prioritization Using System Models”, 21st IEEE

International Conference Software

Maintenance(ICSM ‟05), pp. 559-568, 2005.

