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ABSTRACT 

The present study concerns to boundary layer viscous fluid flow and  heat transfer over a 

nonlinear stretching surface with the effect of variable surface temperature, partial slip, and 

magnetic field.The governing boundary value problem,consisting of  a set of nonlinear 

partial differential equations are transformed into a set of nonlinear ordinary differential 

equations and are solved using Runge-Kutta fourth order method.The Effects of various flow 

and heat transfer charecteristics are analysed and the results are suitably interpreted 

graphically. 
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I INTTRODUCTION 

Sakiadis [1], was the first to investigate the boundary layer flow past a moving solid 

surface of a viscous fluid with a constant velocity. Later, the numerical results of Sakiadis [1] 

were confirmed by Tsou et al. [2] analytically and experimentally.In recent years,  

the flow and heat transfer over a stretching sheet immersed in a Newtonian fluid in 

the presence of magnetic field has received great attention because of its important 

applications in metallurgical industry which involves the cooling of continuous strips and 

filaments drawn through a quiescent fluid. The problem of flow and heat transfer over  

stretching surface find applications to polymer technology, where one deals with stretching of 
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plastic sheets. In particular , many metallurgical processes invove cooling of continuos strips 

or filaments by drawing them through a quiscent fluid and that in process of drawing, these 

strips are sometimes stretched.In the case of annealing and thinning of copper wires, the 

properties of the final product depend to a great extent on the rate of cooling. In view of such 

applications a problem of this kind is considered in this present work. The process of suction 

and injection has also its importance in many engineering applications such as the design of 

thrust bearing, radial diffusers and thermal oil recovery. Blowing is used to add reactants, 

cool the surfaces, prevent corrosion or scaling and reduce the drag, Labropulu etal[3] 

The problem of non-linear stretching sheet for different cases of fluid flow has also 

been analyzed by different researchers.  Vajravelu [4]examined fluid flow over a nonlinearly 

stretching sheet.  Cortell [5] has worked on viscous flow and heat transfer over a non-linearly 

stretching sheet. Cortell [6] further investigated on the effects of viscous dissipation and 

radiation on the thermal boundary layer, over a non-linearly stretching sheet. Raptis et al [7] 

studied viscous flow over a non-linear stretching sheet in the presence of a chemical reaction 

and magnetic field.  Abbas and Hayat [8] addressed the   radiation effects on MHD flow due 

to a stretching sheet in porous space. Cortell [9] investigated the influence of   similarity 

solution for flow and heat transfer of a quiescent fluid over a non-linear stretching surface.  

Awang and Kechil [10] obtained the series solution for flow over nonlinearly stretching sheet 

with chemical reaction and magnetic field.   

 The no slip boundary condition( the assumption that a liquid adheres to a solid 

boundary) is one of the central tenets of the Navier Stokes theory. However, there are 

situations wherein this condition does not hold.The inadequacy of the no slip condition is 

evident for most Newtonian as well as non-Newtonian fluids.For,example, polymer melts 

often exhibit macroscopic wall slip and that in general is governed by a nonlinear and 

monotone relation between the slip velocity and the traction.This may be important in shear 

skin, spurt and hysterisis effects, and also the fluids which exhibit slip boundary condition 

have important technological  applications such as in the polishing of artificial heart valves 

and internal cavities. Navier[11] proposed a slip boundary condition wherein the slip depends 

linearly on shear stress. 

 In the recent years,micro-scale fluid dynamics in the Micro-Electro-Mechanical 

Systems (MEMS)received much attention in research.Because of the micro-scale 

dimensions,the fluid  flow behavior belongs to the slip fow regime and greatly differs from 
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the traditional flow .For the fow in the slip regime,the fluid motion still obeys the Navier 

Stokes equations,but with slip velocity or temperature boundary conditions. 

 In addition,  Partial velocity slip may occur on the stretching boundary when the field 

is particulate such as emulsions, suspensions, foams and polymer solutions.   

In certain cases, partial slip between the fluid and the moving surface may occur. 

Examples include situations when the fluid is particulate such as emulsions, suspensions, 

foams and polymer solutions. Also the extrudate may be rough or porous where the no slip 

condition is considered. In these cases the proper boundary condition is well described by 

Navier’s condition.  

All the investigators restricted their analysis to viscous/visco-elastic flow over a non-

linear stretching sheet. However, the intricate problem of flow and heat transfer over non-

linear stretching sheet with the effects of buoyancy and partial slip is yet to be studied.  This 

has several industrial applications. Hence the present paper aims in the investigation of the 

same. The combined effect of all the above-mentioned parameters has not been reported so 

far, in the literature, which makes the present problem unique 

II Problem formulation 

Consider a steady, two-dimensional free convection flow adjacent to a nonlinear 

stretching vertical sheet immersed in an incompressible electrically conducting viscous fluid 

of temperature T . The stretching velocity ( )wU x  and the surface temperature ( )wT x  are 

assumed to vary linearly with the distance x  from the leading edge, i.e. ( ) = m

wU x ax  and 

( ) = s

wT x T bx  , where a  and b  are constants with > 0a  , 0b  ,  and  
1

2( )
m

B x Bx


 . 

The boundary layer equations of motion and heat transfer are, 

= 0,
u v

x y

 


 
                                      (1) 
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and are subjected to the following boundary conditions 
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Where 
1

2
( 1)

( )
2

m

w w

a m
v x f x





   

0, , as ,u T T y           (4) 

where u  and v  are the velocity components along the x and y  axes, respectively. Further,  , 

 ,  ,  and T , are the dynamic viscosity, fluid density,  thermal diffusivity, and fluid 

temperature in the boundary layer,   respectively.  

A common feature of all these analyses is the assumption that the flow field obeys the 

conventional no-slip condition at the sheet that is the velocity component   ,u x y  parallel 

with the sheet becomes equal to the sheet velocity max   at the sheet. In certain situations, 

however, the assumption of no-slip does no longer apply and should be replaced by a partial 

slip boundary condition which relates the fluid velocity u to the shear rate  
u

y




 at the 

boundary. Here L is the slip length, and y denotes the coordinate perpendicular to the surface. 

This slip-flow condition was first introduced by C-L.M.H Navier more then a century ago 

and has more recently been used in studies of fluid flow past permeable walls, slotted plates, 

rough and coated surfaces, and gas and liquid flow in micro devices. The no-slip boundary 

condition is known as the central tenets of the Navier-Stokes theory. But there are situations 

wherein such condition is not appropriate .Especially; no slip condition is inadequate for most 

non-Newtonian fluids. For example polymer melts often exhibit macroscopic wall slip and 

that in general is governed by a non-linear and monotone relation between the slip velocity 

and traction. The fluids exhibiting boundary slip find applications in technology such as in 

the polishing of artificial heart valves and internal cavities. Navier suggested a slip boundary 

condition in terms of linear shear stress.                 

The momentum,  and energy equations, (2),(3), and (4) can be transformed into the 

corresponding nonlinear ordinary differential equations by the following similarity 

transformation: 

1/2 1

2
( 1)

= ,
2

m
m a

x y

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 
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     ( , ) ( ),mu x y ax f         

1
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2
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Where ( ) s

wT x T bx  , b  is dimensional constant  and n is the index  

Of power law variation of temperature.   

The transformed nonlinear ordinary differential equations are 

22
= ,

1

m
f ff f Mf

m

 
     

 
                                                       (7) 

22
 

(1 )

B
where M

a m
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
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
 

2
= [ ( ) ],

1
r

s
P f f

m
     


                                (8) 

 Boundary conditions (6.2.4)  becomes 

   0 = 0 =1 (0), (0) =1, ( ) 0, ( ) 0.wf f f f f               (9) 

Where Re (1 ),xL m  
1

Re
m

x

ax





 ,  

III Numerical Solution 

 The nonlinear boundary value problem represented byEqs.(7) to(9) is solved 

numerically using Fourth-orderRunge Kutta shooting  technique.Making an initial guess for 

the values of (0) (0)f and   to initiate the shooting process is very crucial in this process.The 

success of the procedure depends very much on how good this guess is. Numerical solutions 

are obtained for several values of the physical parameters i.e. magnetic parameter M, 

suction/injection parameter wf , stretching parameter m, Prandtl number Pr, and slip 

parameter . 

VResults and discussion 

The nonlinear ordinary differential equations (7) - (8) subject to the boundary 

conditions (9) have been solved numerically using fourth order Runge-kutta shooting 

Technique.In order to have a physical point of view of the problem, numerical calculations 

were carried out for different values of magnetic parameter M,  suction/injection 

parameter wf , stretching parameter m ,Prandtl number Pr,  and slip parameter  .  

 The influences of the magnetic parameter M  on the velocity and temperature profiles 

are depicted in fig1. It can be seen that increasing M  is to reduce the velocity distribution in 

the boundary layer which results in thinning of the boundary layer thickness, and hence 

induces an increase in the absolute value of the velocity gradient at the surface 
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The influence of suction/ injection parameter wf , over the dimensionless longitudinal 

velocity profile is shown in fig 2 and it is noticed that longitudinal velocity decreases with 

suction and increases with injection. It should be noted that in Figure 2,the boundary-layer 

assumptions do not permit a solution of the boundary-layer equation for large wf , because  

will approach a constant value of 1, and the boundary layer is almost literally blown off the 

surface, similar to that of stationary plate with injection (Burmeister [1983]; Kays 

andCrawford [1987]). 

Fig 3, shows the effect of suction/injection on dimensionless temperature profile and it is 

observed that there is decrease in temperature in the thermal boundary layer resulting in 

thinning of thermal boundary layer thickness in the case of suction and the reverse trend is 

observed for injection. Further it is clear that suction ( wf < 0) enhances the heat transfer 

coefficient much better than  injection ( wf  > 0), and the thickness of the thermal boundary 

layer is reduced. Thus, suction can be used as a means for cooling the surface much faster 

than injection.  

 Figs.4 and 5 describe respectively the behaviors of the longitudinal velocity profile 

and temperature profile for different values of power law stretching parameter m  and it is 

noticed that increase in m results in decrease of longitudinal velocity profile which is more 

pronounced for small values of m, where as temperature profile increases with the increase of 

stretching parameter m. It is observed that the variation of the sheet temperature has a 

substantial effect on the thermal boundary layer. This effect is more pronounced when sheet 

temperature varies in the direction of highest stretching rate. 

 An increase in Prandtl number Pr is associated with a decrease in the temperature 

distribution which is displayed in Fig. 6, which is consistent with the fact  that thermal 

boundary layer thickness decreases with increase in the values of prandtl number. The rate of 

heat transfer increases with the increasing values of Prandtl number.The boundary layer edge 

is reached faster as Pr increases. 

Dimensionless velocity profile  f   is presented in fig.7 for some different values of the 

slip parameter . It is readily seen that  has a substantial effect on the solutions. In fact, the 

amount of slip 1 (0)f   increases monotonically with  from the no-slip solution for 0   

and towards full slip as  tends to infinity. The latter limiting case implies that the frictional 

resistance between the viscous fluid and the surface is eliminated, and the stretching of the 

sheet does no longer impose any motion of the fluid The velocity and temperature  profiles 
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presented in figs. 1-7, show that the far field boundary conditions are satisfied asymptotically, 

which support the validity of the numerical results presented. 

 

 

V Conclusions 

 We have theoretically studied the problem of steady two-dimensional  free convection 

flow adjacent to a nonlinearly stretching vertical sheet immersed in an viscous 

incompressible  fluid. The governing partial differential equations are transformed, using 

similarity transformation, to a system of nonlinear ordinary differential equations, before 

being solved numerically by the fourth order Runge –Kutta shooting method. The effects of 

the governing parameters like magnetic parameter M, suction/injection parameter wf , 

stretching parameter m, Prandtl number Pr, and slip parameter  on flow and heat transfer are 

thoroughly discussed with the aid of graphs. The effects of Magnetic parameterM,suction 

parameter wf ,nonlinear stretching parameter is to deccelerate dimensionless longitudinal 

velocity in the boundary layer and an opposite trend is noticed for slip parameter  . Further it 

is noticed that temperature profile increases with increase of stretching parameter m and 

suction parameter wf , and decreases with increase of Prandtl number pr. 
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