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1. INTRODUCTION 

An important area of fixed point theory is the generating space of quasi 2-metric family, because 

of its involvement and application to fuzzy and probabilistic 2-metric space and a minimization 

theorem [1], [3] is to obtain fixed point theorem. In 2008 V. B. Dhagat and V. S. Thakur [2] 

proved non convex minimization theorem for generating space of quasi 2-metric family. In this 

paper we prove a minimization theorem for sequence of mappings 𝑇𝑎  for 𝑎 ∈ 𝑁 and further we 

prove fixed point theorem as an application of minimization theorem with non commuting 

condition known as weak compatible. 

2. PRELIMINARIES 

2.1 Generating space of quasi 2-metric family:- 

Generating space of quasi 2-metric family already defined[1] and [2] as follows:- 

Let 𝑋 be a non empty set and  𝐷𝛼 : 𝛼 ∈ (0,1]  be family of mapping 𝐷𝛼  from 𝑋 × 𝑋 × 𝑋 into 𝑅+. 

 𝑋,𝐷𝛼   is called generating space of quasi 2-metric family if it satisfy following axioms: 

(GM 1) – For any two distinct points 𝑥 and 𝑦 there exit 𝑧 in 𝑋 such that 

                                                     𝐷𝛼(𝑥, 𝑦, 𝑧) ≠ 𝛼 ∈ (0,1]  

(GM 2) – 𝐷𝛼 𝑥, 𝑦, 𝑧 = 0 if at least two 𝑥, 𝑦, 𝑧 are equal and 𝛼 ∈ (0,1]  

(GM 3) –  𝐷𝛼 𝑥, 𝑦, 𝑧 = 𝐷𝛼 𝑥, 𝑧, 𝑦 𝐷𝛼 𝑧, 𝑦, 𝑥 = ⋯……… for all 𝑥, 𝑦, 𝑧 in 𝑋 and 𝛼 ∈ (0,1]  

(GM 4) – for any 𝛼 ∈ (0,1] there exists 𝛼1 , 𝛼2 , 𝛼3, ∈ (0, 𝛼] such that 𝛼1 + 𝛼2 + 𝛼3 , ≤ (0, 𝛼] and 

so 𝐷𝛼 𝑥, 𝑦, 𝑧 ≤ 𝐷𝛼1
 𝑥, 𝑦, 𝑢 + 𝐷𝛼2

 𝑥, 𝑢, 𝑧 + 𝐷𝛼3
 𝑢, 𝑦, 𝑧   

 (GM 5) –   𝐷𝛼 𝑥, 𝑦, 𝑧  is non increasing and left continuous in 𝛼 and ∀ 𝑥, 𝑦, 𝑧 𝑖𝑛 𝑋. Throught 

this paper, we assume that 𝑘:  0,1 → (0,∞) is non decreasing function satisfying the condition                        

                                 𝐾 = 𝑆𝑢𝑝 𝑘(𝛼)   

Let 𝐸 and 𝐹 be mappings from generating space of quasi 2-metric family  𝑋,𝐷𝛼   into itself. The 

mapping  𝐸 and 𝐹 are said to be weak compatible if it commute at convergent point. i.e. for 

sequence 𝑥𝑛  in 𝑋 such that  
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lim𝑛→∞ 𝐸𝑥𝑛 = lim𝑛→∞ 𝐹𝑥𝑛 = 𝑡 for some 𝑡 in 𝑋 then 𝐸𝐹𝑡 = 𝐹𝐸𝑡.  

 

3. MAIN RESULT 

Theorem 3.1. Let  𝑋, 𝐷𝛼 : 𝛼 ∈ (0,1]  and {𝑌, 𝐷´
𝛼 : 𝛼 ∈ (0,1]} be two complete generating space 

of quasi 2-metric family. 𝑓:𝑋 → 𝑌 be a closed and 𝑇𝑎 : 𝑋 → 𝑋 be continuous mapping satisfying 

for all 𝑎 ∈ 𝑁  

(i) 𝐷𝛼(𝑇𝑎𝑥, 𝑇𝑎𝑦, 𝑧) ≤ max 𝐷𝛼 𝑇
𝑎𝑥, 𝑦, 𝑧 .  𝑥, 𝑇𝑎𝑦, 𝑧 .  𝑥, 𝑦, 𝑇𝑎𝑧   and  

(ii) 𝐷´
𝛼 𝑓 𝑇

𝑎𝑥 . 𝑓 𝑇𝑎𝑦 . 𝑓 𝑧   

≤ 𝑚𝑎𝑥 𝐷´
𝛼 𝑓 𝑇

𝑎𝑥 . 𝑓 𝑦 . 𝑓 𝑧  , 𝐷´
𝛼 𝑓 𝑥 . 𝑓 𝑇

𝑎𝑦 . 𝑓 𝑧  , 𝐷´
𝛼 𝑓 𝑥 . 𝑓 𝑦 . 𝑓 𝑇

𝑎𝑧   ,           

                                                                                             ∀  𝑥, 𝑦, 𝑧 ∈ 𝑋 and 𝛼 ∈ (0,1]  

(iii) Ψ:ℜ → ℜ be non decreasing continuous and bounded below function, 

(iv) ∅: 𝑓(𝑥) → ℜ be a lower semi continuous and bounded below function, 

(v) 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑝 ∈ 𝑋 with  infΨ ∅ f 𝑥   < Ψ ∅ f 𝑝    there exists 𝑞 with 𝑝 ≠ 𝑇𝑞 and  

max 𝑚𝑎𝑥 𝐷𝛼 𝑇
𝑎 , 𝑞, 𝑝, 𝑧 , 𝐷𝛼 𝑞, 𝑇𝑎𝑝, 𝑧 , 𝐷𝛼 𝑞, 𝑝, 𝑇𝑎𝑧   ,  

𝑐.𝑚𝑎𝑥 𝐷´
𝛼 𝑓 𝑇

𝑎𝑞 . 𝑓 𝑝 . 𝑓 𝑧  , 𝐷´
𝛼 𝑓 𝑞 . 𝑓 𝑇

𝑎𝑝 . 𝑓 𝑧  , 𝐷´
𝛼 𝑓 𝑞 . 𝑓 𝑝 . 𝑓 𝑇

𝑎𝑧     

≤ 𝐾 𝛼  Ψ  ∅ f 𝑝   − Ψ ∅ f 𝑞     ∀  𝑥, 𝑦, 𝑧 ∈ 𝑋 and 𝛼 ∈ (0,1]  

And 𝑐 is any constant. 

Then there exists an 𝑥0 in𝑋 such that with  inf Ψ ∅ f 𝑥   = Ψ ∅ f 𝑝   .  

Proof:   Let us suppose infΨ  ∅ f 𝑥   < Ψ ∅ f 𝑝    for every 𝑦 in 𝑋 and choose 𝑟 ∈ 𝑋  

For which infΨ ∅ f 𝑟    is defined then inductively we define a sequence  𝑟𝑛  ⊂ 𝑋 with  

𝑟1 = 𝑟. suppose 𝑟𝑛  is know is consider  
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𝑊𝑛 =

  𝑤 ∈

𝑋:max⁡𝑚𝑎𝑥𝐷𝛼𝑇𝑎𝑤, 𝑟𝑛,𝑧,𝐷𝛼𝑤, 𝑇𝑎𝑟𝑛,𝑧,𝐷𝛼𝑤, 

𝑟𝑛,𝑇𝑎𝑧,𝑐.𝑚𝑎𝑥𝐷´𝛼𝑓𝑇𝑎𝑤.𝑓𝑟𝑛.𝑓𝑧,𝐷´𝛼𝑓𝑤.𝑓𝑇𝑎𝑟𝑛.𝑓𝑧,𝐷´𝛼𝑓𝑤.𝑓𝑟𝑛.𝑓𝑇𝑎𝑧  

≤ 𝐾(𝛼)  Ψ  ∅ f 𝑟𝑛   − Ψ ∅ f 𝑤      ∀ 𝑥, 𝑦, 𝑧 ∈ 𝑋 and 𝛼 ∈ (0,1]  

𝑊𝑛  is non empty set and there exists 𝑤 ∈ 𝑊𝑛  such that 𝑟𝑛 ≠ 𝑇𝑤. We can choose 𝑟𝑛+1 ∈ 𝑊𝑛  

such that  

𝑟𝑛 ≠ 𝑇(𝑟𝑛+1) and  

Ψ ∅ f 𝑟𝑛   ≤ 𝑖𝑛𝑓Ψ ∅ f 𝑥   + 1 3  Ψ  ∅ f 𝑟𝑛   − 𝑖𝑛𝑓Ψ ∅ f 𝑥    .  

Clearly  Ψ ∅ f 𝑟𝑛+1    is a non increasing lower bounded sequence. Hence it is a convergent 

sequence. 

Now we prove  𝑟𝑛   and  (𝑟𝑛) are Cauchy sequences:  

𝑚𝑎𝑥 𝐷𝛼 𝑇
𝑎𝑟𝑛 , 𝑇𝑎𝑟𝑛+1, 𝑤 , 𝐷´

𝛼 𝑓 𝑇
𝑎𝑟𝑛 . 𝑓 𝑟𝑛+1 . 𝑓 𝑤     

≤

𝑚𝑎𝑥  
𝑚𝑎𝑥 𝐷𝛼 𝑓 𝑇

𝑎𝑟𝑛 , 𝑟𝑛+1 , 𝑤 , 𝐷𝛼 𝑟𝑛 , 𝑇𝑎𝑟𝑛+1 , 𝑤 , 𝐷𝛼 𝑟𝑛 , 𝑟𝑛+1, 𝑇𝑎𝑤  ,

𝑐. 𝑚𝑎𝑥 𝐷´
𝛼 𝑓 𝑇

𝑎𝑟𝑛 . 𝑓 𝑟𝑛+1 . 𝑓 𝑤  , 𝐷´
𝛼 𝑓 𝑟𝑛 . 𝑓 𝑇

𝑎𝑟𝑛+1 . 𝑓 𝑤  , 𝐷´
𝛼 𝑓 𝑟𝑛 . 𝑓 𝑟𝑛+1 . 𝑓 𝑇

𝑎𝑤   
   

≤ 𝐾(𝛼)  Ψ  ∅ f 𝑟𝑛   ≤ 𝑖𝑛𝑓Ψ  ∅ f 𝑟𝑛+1       

∀  𝑛,𝑚 ∈ 𝑁, 𝑛 < 𝑚⟹ there exists 𝛼𝑗 = 𝛼𝑗  𝑛,𝑚 ;   𝛼𝑗 ≤ 𝛼, such that 

𝑚𝑎𝑥  
𝑚𝑎𝑥  𝐷𝛼𝑗  𝑇

𝑎𝑟𝑛 , 𝑟𝑚 , 𝑤 , 𝐷𝛼𝑗  𝑟𝑛 , 𝑇𝑎𝑟𝑚 ,𝑤 , 𝐷𝛼𝑗  𝑟𝑛 , 𝑟𝑚 , 𝑇𝑎𝑤  ,

𝑐.𝑚𝑎𝑥  𝐷´
𝛼𝑗
 𝑓 𝑇𝑎𝑟𝑛 . 𝑓 𝑟𝑚  . 𝑓 𝑤  , 𝐷´

𝛼𝑗
 𝑓 𝑟𝑛 . 𝑓 𝑇

𝑎𝑟𝑚 . 𝑓 𝑤  , 𝐷´
𝛼𝑗
 𝑓 𝑟𝑛 . 𝑓 𝑟𝑚  . 𝑓 𝑇

𝑎𝑤   
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≤

 𝑚𝑎𝑥  
𝑚𝑎𝑥  𝐷𝛼𝑗  𝑇

𝑎𝑟𝑛 , 𝑟𝑚 , 𝑤 , 𝐷𝛼𝑗  𝑟𝑗 , 𝑇𝑎𝑟𝑗+1 , 𝑤 , 𝐷𝛼𝑗  𝑟𝑗 , 𝑟𝑗+1 , 𝑇𝑎𝑤  ,

𝑐.𝑚𝑎𝑥  𝐷´
𝛼𝑗
 𝑓 𝑇𝑎𝑟𝑗 . 𝑓 𝑟𝑗+1 . 𝑓 𝑤  , 𝐷´

𝛼𝑗
 𝑓 𝑟𝑗 . 𝑓 𝑇𝑎𝑟𝑗+1 . 𝑓 𝑤  , 𝐷´

𝛼𝑗
 𝑓 𝑟𝑗 . 𝑓 𝑟𝑗+1 . 𝑓 𝑇𝑎𝑤   

 𝑗=𝑛   

Hence, ∀ 𝑛,𝑚 ∈ 𝑁, 𝑛 < 𝑚;  

≤

𝑚𝑎𝑥  
𝑚𝑎𝑥 𝐷𝛼 𝑇

𝑎𝑟𝑛 , 𝑟𝑚 ,𝑤 , 𝐷𝛼 𝑟𝑛 , 𝑇𝑎𝑟𝑚 ,𝑤 , 𝐷𝛼 𝑟𝑛 , 𝑟𝑚 , 𝑇𝑎𝑤  ,

𝑐. 𝑚𝑎𝑥 𝐷´
𝛼 𝑓 𝑇

𝑎𝑟𝑛 . 𝑓 𝑟𝑚  . 𝑓 𝑤  , 𝐷´
𝛼 𝑓 𝑟𝑛 . 𝑓 𝑇

𝑎𝑟𝑚 . 𝑓 𝑤  , 𝐷´
𝛼 𝑓 𝑟𝑛 . 𝑓 𝑟𝑚  . 𝑓 𝑇

𝑎𝑤   
   

≤ 𝐾(𝜇)  Ψ  ∅ f 𝑟𝑗   − 𝑖𝑛𝑓Ψ ∅ f 𝑟𝑗+1    
𝑚−1
𝑗=𝑛   

≤ 𝐾(𝛼)  Ψ  ∅ f 𝑟𝑛   − 𝑖𝑛𝑓Ψ  ∅ f 𝑟𝑚     
𝑚−1
𝑗=𝑛   

For some 𝛼𝑗  with 0 < 𝛼𝑗+1 < 𝛼𝑘 ≤ 𝛼 𝑗 = 𝑛………… .𝑚 − 1  

𝐷𝛼 𝑟𝑛 , 𝑟𝑛+1, 𝑤 ≤ 𝐷𝛼1
 𝑟𝑛 , 𝑟𝑛+1 , 𝑇𝑎𝑟𝑛+1 + 𝐷𝛼2

 𝑟𝑛 , 𝑇𝑎𝑟𝑛+1 , 𝑤 + 𝐷𝛼3
 𝑇𝑎𝑟𝑛+1 , 𝑟𝑛+1 , 𝑤   

≤

𝐷𝛼1
 𝑟𝑛 , 𝑟𝑛+1 , 𝑇𝑎𝑟𝑛+1 + 𝐷𝛼2

 𝑟𝑛 , 𝑇𝑎𝑟𝑛+1 , 𝑤 + 𝐷𝛼3
 𝑇𝑎𝑟𝑛+1 , 𝑟𝑛+1 , 𝑇𝑎𝑟𝑛 +

𝐷𝛼4
 𝑇𝑎𝑟𝑛+1 , 𝑇𝑎𝑟𝑛 ,𝑤 + 𝐷𝛼5

 𝑇𝑎𝑟𝑛+1 , 𝑟𝑛+1 , 𝑤   

For 𝛼1 + 𝛼2 + 𝛼3 + 𝛼4 + 𝛼5 ≤ 𝛼  

≤

3  
𝑚𝑎𝑥 𝐷𝛼  𝑇

𝑎𝑟𝑛 , 𝑟𝑛+1 , 𝑤 , 𝐷𝛼 𝑟𝑛 , 𝑇𝑎𝑟𝑛+1 , 𝑤 , 𝐷𝛼 𝑟𝑛 , 𝑟𝑛+1 , 𝑇𝑎𝑤  ,

𝑐.𝑚𝑎𝑥 𝐷´
𝛼  𝑇

𝑎𝑟𝑛 . 𝑓 𝑟𝑛+1 . 𝑓 𝑤  , 𝐷´
𝛼 𝑓 𝑟𝑛 . 𝑓 𝑇

𝑎𝑟𝑛+1 . 𝑓 𝑤  , 𝐷´
𝛼 𝑓 𝑟𝑛 . 𝑓 𝑟𝑛+1 . 𝑓 𝑇

𝑎𝑤   
   

≤ 3𝐾(𝛼)  Ψ  ∅ f 𝑟𝑛   − 𝑖𝑛𝑓Ψ  ∅ f 𝑟𝑛+1      

Then also we get  

𝐷𝛼 𝑟𝑛 , 𝑟𝑛+1, 𝑤 ≤ 3𝐾(𝛼)  Ψ ∅ f 𝑟𝑛   − 𝑖𝑛𝑓Ψ ∅ f 𝑟𝑚       
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Where 𝑛 < 𝑚  

In the manner we obtain 

𝐷´
𝛼 𝑓 𝑟𝑛 . 𝑓 𝑟𝑛+1 . 𝑓 𝑤  ≤ 3𝐾(𝛼)  Ψ  ∅ f 𝑟𝑛   − 𝑖𝑛𝑓Ψ  ∅ f 𝑟𝑚       

Where 𝑛 < 𝑚  

Hence  𝑟𝑛   and  𝑓(𝑟𝑛)  are Cauchy sequences.  

Assume that lim𝑛→∞ 𝑟𝑛 = 𝐴   and lim𝑛→∞𝑓( 𝑟𝑛) = 𝐵.  

Since 𝑓 is closed therefore 𝑓 𝐴 = 𝐵.  

By the continuity of Ψ and lower semi  continuity of ∅ we have  

Ψ ∅ f 𝑏   ≤ lim𝑛→∞ Ψ ∅ f 𝑟𝑛   = lim𝑛→∞ Ψ ∅ f 𝑟𝑛+1     

Let  𝛿 = 𝑖𝑛𝑓Ψ ∅ f 𝑥   ∈ R  

Ψ ∅ f 𝑟𝑛+1   ≤ 𝑖𝑛𝑓Ψ ∅ f 𝑥   + 1 3  Ψ  ∅ f 𝑟𝑛   − 𝑖𝑛𝑓Ψ ∅ f 𝑥    , we have  

lim𝑛→∞ Ψ ∅ f 𝑟𝑛+1   ≤  2
3  𝛿 +

1

3 lim 𝑛→∞ Ψ ∅ f 𝑟𝑛    
=

 2
3  𝛿 + 1/3 lim𝑛→∞ Ψ ∅ f 𝑟𝑛+1     

Which is contraction, therefore there exists 𝑥0 in 𝑋 such that  

𝑖𝑛𝑓Ψ ∅ f 𝑥   = ∅ f  𝑥0     

  Now we give a fixed point theorem as an application of the above theorem under 

non commuting condition known as weak compatible.  

Theorem 3.2 Let  𝑋,𝐷𝛼 : 𝛼 ∈ (0,1]  and {𝑌, 𝐷´
𝛼 : 𝛼 ∈ (0,1]} be two complete generating space of 

quasi 2-metric family. 𝑓: 𝑋 → 𝑌 be a closed and 𝑇𝑎 , 𝑆𝑎 : 𝑋 → 𝑋 be continuous mapping satisfying  
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(i) 𝐷𝛼(𝑇𝑎𝑥, 𝑇𝑎𝑦, 𝑧) ≤ max 𝐷𝛼 𝑇
𝑎𝑥, 𝑦, 𝑧 .  𝑥, 𝑇𝑎𝑦, 𝑧 .  𝑥, 𝑦, 𝑇𝑎𝑧   and  

(ii) 𝐷´
𝛼 𝑓 𝑇

𝑎𝑥 . 𝑓 𝑇𝑎𝑦 , 𝑓 𝑧   

≤ 𝑚𝑎𝑥 𝐷´
𝛼 𝑓 𝑇

𝑎𝑥 . 𝑓 𝑦 . 𝑓 𝑧  , 𝐷´
𝛼 𝑓 𝑥 . 𝑓 𝑇

𝑎𝑦 . 𝑓 𝑧  , 𝐷´
𝛼 𝑓 𝑥 . 𝑓 𝑦 . 𝑓 𝑇

𝑎𝑧   ,           

                                                                                             ∀  𝑥, 𝑦, 𝑧 ∈ 𝑋 and 𝛼 ∈ (0,1]  

(iii) Ψ:ℜ → ℜ be non decreasing continuous and bounded below function, 

(iv) ∅: 𝑓(𝑥) → ℜ be a lower semi continuous and bounded below function, 

(v) 𝑆𝑎  and 𝑇𝑎  are weak compatible and  

max 𝑚𝑎𝑥 𝐷𝛼 𝑇
𝑎 , 𝑇𝑎𝑆𝑎𝑥, 𝑧 , 𝐷𝛼 𝑥, 𝑇𝑎𝑆𝑎𝑥, 𝑧 , 𝐷𝛼 𝑥, 𝑆𝑎𝑥, 𝑇𝑎𝑧   ,  

𝑐.𝑚𝑎𝑥 𝐷´
𝛼 𝑓 𝑇

𝑎𝑥 . 𝑓 𝑇𝑎𝑆𝑎𝑥 . 𝑓 𝑧  , 𝐷´
𝛼 𝑓 𝑥 . 𝑓 𝑇

𝑎𝑆𝑎𝑥 . 𝑓 𝑧  , 𝐷´
𝛼 𝑓 𝑥 . 𝑓 𝑆

𝑎𝑥 . 𝑓 𝑇𝑎𝑧      

≤ 𝐾 𝛼  Ψ  ∅ f 𝑥   − Ψ ∅ f 𝑆𝑎𝑥     ∀  𝑥, 𝑦, 𝑧 ∈ 𝑋 and 𝛼 ∈ (0,1]  

And 𝑐 is any constant. Then there exists unique common fixed point 𝑥0 in 𝑋.  

Proof: If  𝑥0 ∈ 𝑋 such that 𝑖𝑛𝑓Ψ ∅ f 𝑥   = Ψ ∅ f 𝑥0       

then 𝑥0 = 𝑇𝑎𝑆𝑎𝑥0. 𝑆𝑎𝑥0 = 𝑇𝑎𝑥0 therefore some 𝛼 ∈ (0,1]  

0 < 𝑚𝑎𝑥 𝐷𝛼 𝑇
𝑎 , 𝑇𝑎𝑆𝑎𝑥, 𝑧 , 𝐷𝛼 𝑥, 𝑇𝑎𝑆𝑎𝑥, 𝑧 , 𝐷𝛼 𝑥, 𝑆𝑎𝑥, 𝑇𝑎𝑧    

≤ 𝐾(𝛼)  Ψ  ∅ f 𝑥0   = Ψ ∅ f 𝑆𝑎𝑥0    ≤ 0  

𝑤ℎ𝑖𝑐ℎ 𝑖𝑠 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛. then  𝑆𝑥0 = 𝑇𝑥0. 

Now by weak compatible of 𝑇𝑎𝑎𝑛𝑑 𝑆𝑎  

𝑆𝑎𝑥0= 𝑇𝑎𝑆𝑎𝑥0 = 𝑆𝑎𝑇𝑎𝑥0 = 𝑇𝑎𝑥0.  

Also for some 𝛼1, 𝛼2, 𝛼3 ∈ (0,1] such that 𝛼1 + 𝛼2 + 𝛼3 ≤ 𝛼  

𝐷𝛼 𝑥0, 𝑇𝑎𝑥0, 𝑧 ≤ 𝐷𝛼1
 𝑥0, 𝑇𝑎𝑥0, 𝑇𝑎𝑆𝑎𝑥0 + 𝐷𝛼2

 𝑥0, 𝑇𝑎𝑆𝑎𝑥0, 𝑧 + 𝐷𝛼3
 𝑇𝑎𝑆𝑎𝑥0, 𝑇𝑎𝑥0, 𝑇𝑎𝑥0, 𝑧  

≤ 𝐷𝛼3
 𝑇𝑎𝑆𝑎𝑥0, 𝑇𝑎𝑥0, 𝑇𝑎𝑥0, 𝑧 = 0. hence  𝑇𝑎𝑥0 = 𝑆𝑎𝑥0 = 𝑥0 
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𝒖𝒏𝒊𝒒𝒖𝒆𝒏𝒆𝒔𝒔: Let us assume there exists another fixed point 𝑦0 such that 

 𝑆𝑎𝑦0 = 𝑇𝑎𝑦0 = 𝑦0and by theorem 3.1 we have 𝑖𝑛𝑓Ψ ∅ f 𝑥   = ∅ f  𝑦0  . 

But 𝑖𝑛𝑓Ψ ∅ f 𝑥   = ∅ f  𝑥0   hence by uniqueness of infima we get 𝑥0 = 𝑦0 

Remark: Theorem 3.1 and 3.2 can be proved easily for convergent sequence of mappings.  

Corollary: Let  𝑋, 𝐷𝛼 : 𝛼 ∈ (0,1]  and {𝑌, 𝐷´
𝛼 : 𝛼 ∈ (0,1]} be two complete generating space 

of quasi 2-metric family. 𝑓:𝑋 → 𝑌 be a closed, ∅: 𝑓(𝑋) → ℜ be a lower semi continuous and 

bounded below function. Let 𝑆𝑎 : 𝑋 → 𝑋 be a mapping such that ∀ 𝑥, 𝑦, 𝑧 ∈ 𝑋 and 𝑐 is any 

continuous mapping satisfying 

max 𝐷𝛼 𝑆
𝑎𝑥, 𝑥, 𝑧 . 𝐷´

𝛼 𝑓(𝑆𝑎𝑥), 𝑓(𝑥), 𝑓 𝑧      

≤ 𝐾(𝛼) ∅ x = ∅ 𝑆𝑎𝑥    

𝐏𝐫𝐨𝐨𝐟: Consider 𝑇 = 1 and Ψ = 1 we get required result.  

𝐄𝐱𝐚𝐦𝐩𝐥𝐞: 

Let 𝑋 = [0,1] 𝑌 =  0,∞ , 𝐷𝛼 = 𝐷´
𝛼 = 𝐷1 defined by 𝐷1 𝑥, 𝑦, 𝑧 =

𝐷(𝑥,𝑦,𝑧)

1+𝐷(𝑥,𝑦 ,𝑧)
 

And 𝐷 𝑥, 𝑦, 𝑧 = 𝑚𝑎𝑥  𝑥 − 𝑦 +  𝑦 − 𝑧 +  𝑧 − 𝑥  ,  

The mapping defined as follows: 

𝑇𝑎 : 𝑋 → 𝑋 as 𝑇𝑎𝑥 = 𝑥2𝑎   𝑓: 𝑋 → 𝑋 as 𝑓𝑥 = 𝑥, ∅: 𝑓(𝑥) → 𝑅 as ∅ 𝑥 = 1/(1 − 𝑥)  

𝑎𝑛𝑑  Ψ: R → R  Ψ x = 𝑥2/2 and 𝐾 𝛼 = 3 satisfy the all conditions of theorem 3.1. 

𝑎𝑙𝑠𝑜  𝑆𝑎 : 𝑋 → 𝑋 is defined 𝑆𝑎𝑥 =
𝑥2𝑎

2𝑎
,  then (𝑆, 𝑇) is weak compatible which satisfying the 

condition of theorem 3.2, hence 0 is a unique fixed point. 
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