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ABSTRACT

A non-convex minimization theorem has been established for generating space of quasi 2-metric

family for sequence of mappings with non commuting weak compatible condition. Also supported
by an example.
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1. INTRODUCTION

An important area of fixed point theory is the generating space of quasi 2-metric family, because
of its involvement and application to fuzzy and probabilistic 2-metric space and a minimization
theorem [1], [3] is to obtain fixed point theorem. In 2008 V. B. Dhagat and V. S. Thakur [2]
proved non convex minimization theorem for generating space of quasi 2-metric family. In this
paper we prove a minimization theorem for sequence of mappings T for a € N and further we
prove fixed point theorem as an application of minimization theorem with non commuting

condition known as weak compatible.

2. PRELIMINARIES
2.1 Generating space of quasi 2-metric family:-

Generating space of quasi 2-metric family already defined[1] and [2] as follows:-

Let X be a non empty set and {D,: @ € (0,1]} be family of mapping D, from X x X x X into R*.

{X,D,} is called generating space of quasi 2-metric family if it satisfy following axioms:
(GM 1) — For any two distinct points x and y there exit z in X such that
D,(x,y,z) # a € (0,1]
(GM 2) - D, (x,y,z) = 0 if at least two x, y, z are equal and a € (0,1]
(GM3)- D,(x,y,z) =D,(x,2z,y)D,(z,y,x) = -+ e ... ... forall x,y,zinX and « € (0,1]

(GM 4) —for any a € (0,1] there exists aq, a,, a3, € (0, ] such that a; + a, + a3, < (0,a] and
S0 D, (x,y,2) < Do, (x,y,u) + Dy, (x,u, 2) + Dy, (u,y, 2)

(GM 5) — D, (x,y,z) is non increasing and left continuous in a and V x,y, z in X. Throught
this paper, we assume that k: (0,1] — (0, ) is non decreasing function satisfying the condition
K = Sup k(a)

Let E and F be mappings from generating space of quasi 2-metric family {X, D, } into itself. The
mapping E and F are said to be weak compatible if it commute at convergent point. i.e. for

sequence x,, in X such that
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lim, _, Ex, =lim, _, Fx, =t for some t in X then EFt = FEt.

3. MAIN RESULT

Theorem 3.1. Let {X,D,:a € (0,1]} and {Y,D ,:a € (0,1]} be two complete generating space
of quasi 2-metric family. f: X — Y be a closed and T: X — X be continuous mapping satisfying

foralla e N

(i) D,(T%x,T%y,z) < max{D,(T%x,y,z).(x,T%y,z).(x,y,T%z)} and
(i) D (f(T).f(T).f(2))

< max{D o (f(T*x). f). £ (2)), D o (f (). f(TY). f(2)), D o (f ). f (). f(T*2))},
V x,y,z€ Xand a € (0,1]

(iii)  W:R — R be non decreasing continuous and bounded below function,

(iv)  @: f(x) = R be a lower semi continuous and bounded below function,

(v)  foranyp € X with inf¥ (Q)(f(x))) <y (Q)(f(p))) there exists g with p # Tq and

max[max{D,(T% q,p,2),D,(q,T*p,2),D,(q,p, T*2)}],

c.max{D ' (f(T°q).f()-f(2)), D o (f (@) F(TD). (), D o (f (@)-f (0). £ (T*2))}
< K(a) [‘P (@(f(p))) -y ((D(f(q)))] V x,y,z€ Xand a € (0,1]
And c is any constant.

Then there exists an x, inX such that with inf¥ ((Z)(f(x))) =y ((D(f(p))).
Proof: Let us suppose inf¥ (@(f(x))) <y ((Z)(f(p))) for every y in X and choose r € X

For which inf¥W ((D(f(r))) is defined then inductively we define a sequence {r,} c X with

r, = 1. suppose 7, is know is consider
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W, =

I

XmaxiimaxDalaw, rnzlaw, TarnzDaw,

rnTazcmaxD afTaw. frnfz0 afw. fTarnfz0 afw.frnf7Taz

< K(a) [lP (@(f(rn))) -y (Q)(f(w)))] Vx,y,z€Xanda e (0,1]

W, is non empty set and there exists w € W), such that r, # Tw. We can choose r,,,1 € W,
such that

1, # T (r,4+1) and

¥ () < inf@ (0(£(0))) + 1/3[w (9() ) — infw (0(£C)))].

Clearly ¥ ((z)(f(rn+1))) is a non increasing lower bounded sequence. Hence it is a convergent
sequence.

Now we prove {r, } and {(r;,,) }are Cauchy sequences:

max{Da (TarniTarn+1'W)'D,a(f(Tarn)-f(rn+1)-f(W))}

<
max{Da (f(Tarn)l Tn+1; W); Da (rn; Tarn+1i W), D(z (rni rn+11 Taw)};

c.max{D o (f (T*1,). f (1 41)- fF WD), Do (f (). f (TP 1)- fFW)), D o (f (). f (1) f(T“W))}l

max l
<K@ |¥ (0(fr))) < inf¥ (9(fCros1)) )|
vV n,m € N,n < m = there exists o; = a; (n,m); X @; < a, such that

max {Daj (T%r,, 1, W), Da]_ (r,, Tr,p,, W), Da]_ (1, s Taw)},
max
e.max (Do (FTR). F ). F), D', (F ). f (T30, F WD), D', (F (). £ G- FTW)))
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<
max {Da, (T%r,,7,,w),D,. (7}-, Ta73-+1,w),Da. (7}-,7}-+1,T“w)},
Zj:n max , J , J j '
e.max{D'y, (F(T5). F(5:1)-F WD), D'ay (F(5)- F(T800). fFW)), D', (£(5). £ () - F (T oW
Hence, Vn,m e N,n < m;

<
max{D, (T, 1, w), D, (1, T, W), Dy (17, 1y, TOW)},

c.max{D o (f(Tr). f (). fFW)), D o (f (). f(T73). f(W)), D' (f(rn)'f(rm)'f(TaW))}l

max I

< k@ 275! [¥ (0 (1)) - inrw (0 (107.)) )]

< K(a) Z}":_nl [‘P ((Z)(f(rn))) —inf¥ ((Z)(f(rm)))]
Forsome q; with 0 < @j ;1 <ay <aj=n........m—1
Da (Tn, Th+1 W) < Doc1 (rn' Th+1 Tarn+1) + Daz (rn: TaT'n+1, W) + Da3 (Tarn+1' Tn+1, W)

<
Da1 (T'n, Tn+1) Tarn+1) + Daz (rn' TaT'n+1, W) + Da3 (Ta‘l"n+1, Tn+1, Tarn) +

Da4 (Tarn+1fTaran) + Das (TaT'n+1,T'n+1,W)
Forag+a,+taz+a,+as <a

<

3 [ max{D, ((T°71,), 41, W), Do (1, Ty 41, W), Dy (13, Tnpr, TOW)},
c.max{D ', ((T%%,). f (rps1)- FW)), D' (f 7). F (T%0010). F W), Do (f (1) f (1) £ (T W) )}

< 3K(@) [ (0(£Gr))) - infw (2 (1))

Then also we get

D, (1, i1, W) < 3K(a) [LP ((Z)(f(rn))) —inf¥ ((D(f(rm)))]
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Where n <m

In the manner we obtain

D o (F (). f(rusn). FW)) < 3K (@) [ (0(£1))) — infw (0(£C5,)) )|
Where n < m

Hence {r, } and {f (r;,)} are Cauchy sequences.

Assume that lim,, ., 7, = A and lim,,_., f(7;,) = B.

Since f is closed therefore £ (4) = B.

By the continuity of W and lower semi continuity of @ we have
¥ (B(£(5))) < limyoseo W (0(£(r))) = limyyoseo W (0(£Cr41)) )
Let & = inf¥ ((f(x))) € R

¥ (0(f(r4))) < inf@ (0() ) + 1/3 [w (0(£G)) ) — inf¥ (9(£Cx)) )|, we have

i (0001) % (/) 45—
(2/3)8 + 1/31imy 00 ¥ (0(£Cru11)) )

Which is contraction, therefore there exists x, in X such that

inf¥ (8(£())) = B(f(x0))

Now we give a fixed point theorem as an application of the above theorem under

non commuting condition known as weak compatible.

Theorem 3.2 Let {X,D,:a € (0,1]}and {Y, D ,: @ € (0,1]} be two complete generating space of

quasi 2-metric family. f: X — Y be aclosed and T¢,S5%: X — X be continuous mapping satisfying
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(i) D,(T%x,T%y,z) < max{D,(T%x,y,z).(x,T%y,z).(x,y,T%z)} and
(i) Do (f(T%).F(T*Y),f(2))

<max{D ,(f(T%).f»).f(2)),D ((f (). f(Ty).f(2)),D o (f (). f »). £ (T?2))},
V x,y,z€ Xand a € (0,1]

(ii)  W:R — R be non decreasing continuous and bounded below function,
(iv)  @: f(x) = R be a lower semi continuous and bounded below function,
(v)  S%and T“ are weak compatible and

max[max{D,(T* T*S%x,z),D,(x,T*S%x,z),D,(x,5%x,T*2)}],

c.max{D o (f (T*x). f(TS*x). f(2)), D o (f (x). f(T?S°%). £ (2)), D o (f (). f(S°x). f (T*2))}
< K(a) |w (0(x))) - w (0(f(s°x)))| v x, 7,z € X and a € (0,1]
And c is any constant. Then there exists uniqgue common fixed point x, in X.
Proof: If x, € X such that inf¥ (9(f(x))) = ¥ (9(f(xo)))
then xo, = T%S%x,. S%xy = T*x, therefore some a € (0,1]
0 < max{D,(T* T*S%x,z),D,(x,T*S%x,z),D,(x,S%x,T*z)}
< k(@) [¥ (0(f(x0))) = ¥ (B(F(S“x0)) )| < 0
which is contraction. then Sx, = Tx,.
Now by weak compatible of T%and S*¢
S%g=T*S%q = ST = T%.
Also for some ay, @y, a3 € (0,1] suchthat ¢y + a, + a3 < «a
D, (xo, T%x,2) < Dg, (%0, T%x0, T*S%x0) + Dy, (%0, T*S%%0,2) + D, (T*S%x, T %0, T*%,2)

< Dy, (T*S%x, Tx, Tx0,2) = 0. hence T¢xy = S%x( = x
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uniqueness: Let us assume there exists another fixed point y, such that
S%, = T%, = yoand by theorem 3.1 we have inf¥ ((Z)(f(x))) = 0(f( yo)).

But infW¥ ((Z)(f(x))) = @(f( x,)) hence by uniqueness of infima we get x, = y,
Remark: Theorem 3.1 and 3.2 can be proved easily for convergent sequence of mappings.

Corollary: Let {X,D,:a € (0,1]} and {Y,D',: a € (0,1]} be two complete generating space
of quasi 2-metric family. f: X — Y be a closed, @: f(X) — R be a lower semi continuous and
bounded below function. Let S¢: X — X be a mapping such that V x,y,z € X and c is any

continuous mapping satisfying

max{D, (Sx,%,2). Do (f (S"x), f (), f (2))}

< K(@)[0x) = 8(5x)]

Proof: Consider T = 1 and ¥ = 1 we get required result.

Example:

LetX = [0,1]Y = [0,00], D, = D', = D; defined by Dy (x,y,2) = 17,22

And D(x,y,z) = max{|x —y| + |y — z| + |z — x|},

The mapping defined as follows:

TX > XasTx=x* fiX>Xasfx=x,0:f(x) >RasB(x) =1/(1 —x)
and W:R - R W(x) = x?%/2 and K(a) = 3 satisfy the all conditions of theorem 3.1.

2a
also S*:X — X is defined §%x = xz—a then (S, T) is weak compatible which satisfying the

condition of theorem 3.2, hence 0 is a unique fixed point.
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