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ABSTRACT

In this paper, we prove a common fixed point theorem for six mappings which satisfying

compatible of type (A) under an implicit relation and rational expression.
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1 INTRODUCTION AND PRELIMINARIES
Several authors proved common fixed point theorems using the concept of compatible
maps as compatible of type (A) [1] and compatible of type (B) [3]. In 1998, H.K. Pathak, Y.J.
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Cho, S.M. Kang , B. Madharia [2] introduced another extension of compatible mapping of type
(A) in normed spaces , called compatible mappings of type (C) and with some examples they
compared these mappings with compatible maps , compatible maps of type (A) and compatible
maps of type (B) . Further Popa [4], did lot of work for compatible mappings satisfying an
implicit relation. In the continuation of this context we are proving a common fixed point
theorem with six mappings which satisfying the compatible mappings of type (A) and implicit
function in (R*)® .

IMPLICIT RELATION

As in [4], we denote by F the set of all real continuous functions F: (R+)8 >R
(F1): F is non — increasing in the variable ¢,

(F2): there exists h € (0,1) such that for every u,v = 0 with

(F3): F(u,0,u,u,u,0,0,0) > 0

(F4): F(u,0,0,0,u,0,u4,0) >0

(F5): F(0,u4,0,u,0,0,0,u) >0

(F6): F(0,u,0,u,u,u,0,0) >0

(F*): F(O,u,v,u+1v,0,0,v,u) <O0.

Then we have u < hv

Definition1.1. Let S and T be mappings from a metric space (X,d) into itself. The
mapping S and T are said to be compatible, if
lim,_,, d(8Tx,,TSx,) =0

Definition1.2. The mappings S and T from metric space (X,d) into itself are said to be

compatible of type (A) if

lim,_,, d(STx,,TTx,) = 0and lim d(TSx,,SSx,) =0
n—-oo
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Proposition 1. LetS and T be continuous mappings from a metric space itself. Then the
following are equivalent:

Q) S and T are compatible

(i) S and T are compatible of type (A)
Proposition 2. Let S and T be mappings from a metric space (X, d) into itself. If Sand T are
compatible of type (A) in X such that lim,,_,, S x,,= lim,_, T x,, = z for some z € X, then

() lim,,_,., TS x,, = Tz if T is continuous at z,

(i) STz=TSzand Sz =Tz, if Sand T are continuous at z,

2. Main results

Theorem 2.1: Let A, B, S, T, I & ] be mappings from a Normed linear space (X, ||||) into itself
satisfying the conditions

(@ I(X) c AB(X), J(X) c ST(X)
(b) One of 4, B, S, T, 1,] is continuous
(c) The pair (I,AB), (J, ST) are compatible of type (A)

(d) F{IISTY — Ix [, ISTy = Jy I, |Bx — STy [, |Bx = Jy ||, By — Ix [, ISTy — ABy II,} <0
[ABx — Ix ||, |ABy — Jy || B

forall x,y in X,

then A,B,S,T,1 & ] have a uniqgue common fixed point.

Proof: By (a) I(X) c AB(X), for any x, € X there exist a point x; € X such that
Ixy, = ABx;.Since J(X) c ST(X), for this point x; we choose a point x, € X such that

Ix; = STx, .Inductively we can find a sequence
Yon = IXon = ABX2p 41

Yon+1 = JX2n41 = STxop 4

Using inequality (d), we have successively
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|ABX2pn 11 — JXon+2 | [[ABX2n12 — Ixon 41 [ IST X 2042 — ABXgpn 42 |,

ISTX2n42 = IXon41 1, [ISTX2n 42 — JXon42 |l [ABX 2541 — STX2n42 ||,
F <0
WABX2pn 11 — IX2n41 | [[ABX2n12 — JX2n42 ||

_ F{ [V2n+1 = Yan+1 b 1Von+1 = Yonsz b [1V2n = Yonst [ 1y2n = Yan+2 [l } <0
[V2n+1 = Yans1 b 1Y2n+1 = Yons b [1V2n = Yonst [ 1V2n+1 = Yona2 (D 7

By condition (F1), we have

F{O' IVan+1 = Yon+2 b 11V2n = Yon+1 b1V2n — Yon+1 1+ 1V2n+1 — Yon+2 s 0:0:} <0
Yan — Yan+1 b [V2n+1 — Yon+2 |l o

So we obtain by (F'),
1V2n+1 = Yon+2 || < hl[yan — Yons1 ||
Similarly, we get
1¥2n = Yan+1 | € hlly2nt1 — You |l

Proceeding in the same way, we get

[Van+1 = Yansz | S hP 7 Hyo — v ||

It follows that {y, } is a cauchy sequence in X is complete, {y, } is convergent to a point z in X.
Since Ix,,, /X541, ABx2y, 11, ST x4, 4, are subsequences of {y,}, they also converge to a point z,

thatisas = o, Ixy,, JXons1, STXop41 = 2.

Suppose AB is continuous and the pair {I, AB} is compatible of type (A), by proposition (2)
I1(AB)x3,+1 = ABz , (AB*)x3,,1 — ABz

Put x = ABxy,,q and y = x5, 4, in (d)

ISTX2n42 — IABX 2541 |, ST X 2042 — JXon42 ||, ||(AB)2x2n+1 = STx2n42 |,
F ||(AB)2x2n+1 = JXan42 | [|ABXopn 1o — IABX 2541 ||, [IST X242 — ABXgpip |, ¢ <0
I(AB)?*x2n41 — IABX 241 | |ABX 2012 — JXon42 ||

Which implies that,as n — oo
F{||z— ABz|,0,||ABz — z||,||ABz — z ||, ||z — ABz||,0,0,0} <0
Which is contradiction of (F3), if ||z — ABz || # 0. Thus = z..

Putx = Ixy, and y = x,,,41 in (d)
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ISTx 2041 — TUx2) L ISTX 2041 — JXon41 L [[ABUX2,) — STX 041 ||,
FS[AB(Ix2,) — Jx2n41 L IIABX2n 41 — I(Ix2) ||, [[ABXgn41 — JXon41 I g <O
ISTX2n4+1 — ABX2p 11 ||, |AB(IX2,) — (Ix2y) ||

Which implies that, as n -

F{|z—1z|,0,||ABz—z|,||ABz — z ||,||z— 1z |,0,0, ||[ABz — Iz ||} <0
Which implies that Iz = z = ABz
Now we show that Bz = z . By putting x = Bz and y = x3,41 in(d)

ISTx2n41 — IBZ ||, ||ST X241 — JX2n41 [, |AB(BZ) — STX 3541 ||,
FIIAB(Bx) — JX2p41 |, |ABX2n 41 — IBZ ||, [|STX 2541 — ABXgpyq [,p <0
|AB(Bx) — IBz ||,||ABX2n4+1 — JX2n+41) ||

Which implies that, asn — o

F{||z — Bz||,0,0,0,||z — Bz||,0,||z — Bz |,0} <0
Which implies that Bz = z, since ABz =2z ,Az =z
Now the pair {J, ST} is compatible of type (A) therefore by proposition 2
Now by putting x = zand y = STx,,,, in (d)

||(ST)2x2n+2 — Iz, ||(ST)2x2n+2 _](ST)x2n+2 Il,[|ABz — (ST)2x2n+2 Il
F1||ABz _](ST)x2n+2 Il ||AB(ST)x2n+2 — Iz, ||(ST)2x2n+2 - AB(ST)x2n+2 ¢ =0
|ABz — 12|, ||AB(ST)X 2542 — J(ST)X2n42 ||

Which implies that, as n — o

F{0,||z— STz ||,0,|z— STz|},0,0,0, ||z — STz |} <0
Which implies that STz = z
Now by putting x = zand y = Jx,,4+4 in (d)

ISTUxzn41) = IZ [, ISTUx2n41) —JUX2n41) [ [[ABZ — ST (JX2041) II,
F{ABz — J(Jx2n+ DI IAB(UXx2n41) = 1Z | [IST x2n41) — AB(Jx2p4+1)|, |ABz — Iz |, ; <0

IAB(Jx2p41) —JUX2041) |l

Which implies that, as n - «

F{0,||z—=Jz|,0,||lz—Jz],0,0,0,]]z—Jz |} <O
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Which implies that /z = z and hence STz =z = Jz
Finally we show that Tz =z .Put x =zand y =Tz in(d)

F{ IST (Tz) — 12|}, |ST(T2) — J(T2)|},||ABz — ST(T2)|},||ABz — ] (TZ)], } <0
|AB(Tz) — Iz, [[ST(T2) — AB(T2) ||, |ABz — Iz ||, |AB(Tz) — J(T2) |) —

asn — oo
F{0,||z—Tz|,0,/|z—Tz|,||Tz—z]|,|lz— Tz||,0,0} <0
Which implies that Tz = z since STz = z,we have Sz = z

Therefore by combining the above results, we have

That is z is common fixed point of A,B,S,T,I and J.

P {HSTW —1z||,|STw —]Jz||,||ABz — STw ||, ||ABz — Jw ||, ||ABw — Iz ||,} <0
|ISTw — ABw ||, ||ABz — Iz||, ||ABw — Jw || -

F{lw—z||lw—z|lz—wl.llz—w|,llw—z],0,0,0} <0
Therefore we have w = z This complete the proof.

Theorem 2.2: Let A, B, S, T, I & ] be mappings from a Hilbert space (X, || ||) into itself satisfying

the conditions
(@) 1(X) € AB(X) ,]J(X) < ST(X)
(b) One of A,B,S,T,1,] is continuous
(c) The pair (I,AB), (J, ST) are compatible of type (A)

STy = Ix |I%, ISTy = Jy |I*,1Bx = STy |[*, |Bx = Jy |, 1By — Ix ||2} -

(d F{' ) ) ;
STy — ABy |2|lABx — Ix |2, |ABy — Jy |

0 forallx,yinX,
then A,B,S,T,1 & ] have a uniqgue common fixed point.

Proof: Same as Theorem 2.1 with parallelogram law.

Corollary 2.2.1: Let A,B, S, T, I & J be mappings from a Hilbert space (X, || ||) into itself

satisfying the conditions

(@) I(X) c A(X) ,J(X) € S(X)
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(b) One of 4, S, 1,] is continuous
(c) The pair (1,A), (J,S) are compatible of type (A)

ISy — Ix |2, 11Sy = Jy 1% lx = Sy |15, 11x = Jy % [ly — Ix |
ISy — Ay |*[|Ax — Ix |[*, || Ay — Jy |

then A, S, 1 & J have a unique common fixed point.

(d)F{ } <0 forallx,yinX,

Proof: Consider B and T identity mappings in theorem 2.2.

References

[1] Jungck G., Murthy P.P. and Cho Y.J. compatible mappings of type (A) and common fixed
point, Math. Japon., 38 (1993), 381-390.

[2] Pathak H.K., Cho Y.J., Kang S.M. and Madharia B., compatible mapping of type (C) and
Common fixed point theorem of Gregus type, demonstr. Math., 31 (3) 1998, 499-517.

[3] Pathak H. K. and Khan M.S., compatible mapping of type (B) and common fixed point
theorem of Gregus type, Czechoslovak Math. J., 45 (120) (1995), 685-698.

[4] Popa V., some fixed point theorem for compatible mappings satisfying an implicit relation,

Demonstr. Math., 32 (1) 1999, 157-163.

© Associated Asia Research Foundation (AARF)

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories.

Page | 263



