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Abstract. 

The fundamental group is defined using loops in topological spaces, which is the 

first of a series of invariants called homotopy groups.This research  provides a 

treatment of Homological Algebra which approaches the subject in terms of its 

origins in algebraic topology. The basic goal is to find algebraic invariants that 

classifytopological spaces up to homeomorphism, though usually most classify 

up to homotopy equivalence. 
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1. Homotopy Theory 

Let X and Y be two topological spaces and f, g : X →Y be two continuous 

maps. Then f is said to be homotopic to g denoted by f g if there exists a 

continuous map F : X x I →Y such that F{x, 0) = f(x) and F{x, 1) = g(x), z €X. 

 We write F :f ≃g to represent c homotopy from f to g. 
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Two mappings f and g of a space X into a space Y are homotopic 

g) ~ f  write we(and   if there is a mapping 
1h:X I Y  such that for each 

point x in X, 

)()0,( xfxh   and ).()1,( xgxh   

This is just another way of that ,1  0 gXhandfXh  and hence 

we have the connection with 1-parameter families. The mapping h is called a 

homotopy between f and g and the product space 1IX  is the homotopy 

cylinder.  

In these terms, the mapping  1 and 0 11  XhXh shown in Fig. 1.1 are 

homotopic mapping of S
1
 into E

2
. Any mapping of S

1
 into E

2
 is homotopic to 

any other such mapping, so our example is rather trivial. Such a statement is not 

true for every space Y, of course. For instance, let Y be the punctured plane 

E
2
 (0,0). Then a constant mapping c of S

1
 onto a single point p of cannot be 

homotopic to a mapping of f of s
1
 onto a simple closed curve J passing around 

the (missing) orign (see Fig.1.2). Intuitively, it is impossible to deform J 

continuously onto the point p while remaining in the space Y. 

The question of the existence of a homotopy between two mappings f, 

g:X→Y can be very difficult. The answer depends upon f and g, certainly, and 

also upon the structure of the spaces X and Y. It is evident that this question is 

one of extending a given mapping. For if f and g are 

 

 

Two mappings of X into Y, then we have a mapping h on the closed subset 

1 of )1()0( IXXX   given by )()0,(' xfxh   and ).()1,(' xgxh  Then f 

FIGURE 1.1 FIGURE 1.2 
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and g are homotopic if and only if h can be extended to a mapping h of the 

entire product space 1IX  into Y. Thus it would seem that theorems about 

homotopy are but special cases of more general theorems on the extension of 

mappings. Indeed such is the case, but the general extension problem is far from 

being soled, and also the special case of homotopy plays an important role in 

the more general problem. 

THEOREM1.1 The homotopy relation between mappings of a space X into a 

space Y is an equivalence relation on Y
X
. That is, the relation ""~— satisfies:- 

(1) f ~— ffor each mapping f in Y
X
 (reflexive law), 

(2)  f ~— g impliesg~— f   (symmetry law), 

and  

(3) f ~— g andg~— k implies f ~— k  (transitive law). 

Proof: (1) For any mapping f in Y
X
, define YIWh  1:  by 

   ).10(       )(),(  txftxh  

It is evident that h is continuous and that )1,()()0,( xhxfxh   for all points 

x in X. 

 

(2) If f ~— g, then there is a homotopy YIXh  1:  such that )()0,( xfxh   

and )()1,( xgxh   for all points x in X. We define 

).1,(),( txhtxh   

Again h  is obviously continuous and ),()0,( xgxh   while ).()1,( xfxh   Thus 

g —f~ ,. 
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(3) If f ~— gand g~— k,then there are homotopiesh1 and h2 with 

),()0,( ),()1,(),()0,(
211

xgxhxgxhxfxh  and ).()1,(
2

xkxh  We define a 

homotopyh between f and k by setting 

1

2

1
h(x, t) h (x,2t)      0 t

2

1
          h (x,2t 1)  t 1 .

2

 
   

 

 
    

 

 

Then )(
2

1
, xgxh 







by both definitions, so h is well-defined and continuous on 

.1IX  Clearly ),()0,()0,(
1

xfxhxh  while )1,(xh ).()1,(
2

xkxh  Thus f~— k . 

THEOREM1.2. Let A be a closed subset of a separable metric M, and let 
`f  

and `g  be homotopic mappings of A into the n-sphere S
n
. It there exists an 

extension f of 
`f  to all of M, then there also exists an extension g of g’ to all of 

M, and the extensions f and g may be chosen to be homotopic also.  

Proof (we follow Dowker [74]): Let 1:   nh A I S be the assumed 

homotopy between f’ and g’, and let f be the given extension of 
`f  to all of M. 

Let D be the set in 1IM  given by 

).0()( 1  MIAD   

Clearly D is a closed subset of ,1IM  and on D we may define the mapping 

:  nF D S given by 

  ( ,0) ( )   for all  in ,F x f x x M  

and   

  ( , )  ( , )     for all  in  and 0 1.  F x t h x t x A t   

Since  ( ,0) ( ) ( ) h x f x f x  for all points x in A, this mapping F is well-defined 

and continuous.  

 

 



 

© Associated   Asia   Research   Foundation (AARF) 
A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories. 

 

Page | 52 

2. The fundamental group. 

Let Y be a topological space, and let yo be a point in Y. Then the yo-

neighborhood of curves in Y, C(Y,yo), is the collection of all continuous 

mapping YIf 1: of the unit interval into Y such that ).1()0(
0

fyf  Note 

that ),(
0

yYC is a subspace of the function space 
1IY and is not a neighborhood in 

Y in the usual sense. 

Let f and g be two mapping in ).,(
0

yYC Then f is homotopic to g 

modulo yo )~ dabbreviate( gyf
o

 if there exists a homotopy YIIh  11: such that 

  
1in   allfor      )()1,( and )()0,( Ixxgxhxfxh   

and  ),1(),0(
0

thyth     for all t in 
1.I  

This is illustrated by Fig. 2.1 

 

FIGURE 2.1 

LEMMA. Homotopy modulo 
0

y  is an equivalence relation on ),(
0

yYC . 

 It has to be shown that homotopy modulo yo is reflexive, symmetric, and 

transitive.  

We let ),(
01

yY denote the collection of these equivalence classes. By 

introducing a suitable group operation, this collection becomes the fundamental 
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group of Y modulo y0 (or the Poincare group of Y or the first homotopy group of 

Y modulo y0). 

A homotopyh between these two mapping may be given as follows: 













1

4
),(

1
t

x
ftxh   for pairs (x,t) with 14  xt  

)14(
2

 txf  for pairs (x,t) with 4x -1 > t > 4x – 2 















t

tx
f

2

24
3

 for pairs (x,t) with 4x – 2 >t. 

It is a simple matter to check that h is the desired homotopy modulo .
0

y  For 

 

 

Since for ,14  xt we have ),(),(
1

xftxh  etc., the continuity of h is 

assured and the associative law has been proved. 

Next, let j denote the constant mapping 
0

)( yxj  for each point x in 
1.I  

We claim that the equivalence class [j] is the identity element of ).,(
01

yY To 



 

© Associated   Asia   Research   Foundation (AARF) 
A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories. 

 

Page | 54 

prove this, it will suffice to show that fyjf
0

~* for any function f in ).,(
0

yYC

This is done by constructing the homotpy 










 t

x
ftxh

1

2
),(  for pairs (x,t) with t 12  r  

0
y   for pairs (x,t) with .12  xt  

(To see where we got this, examine Fig. 2.3) The continuity of h is only in 

question where ,12  xt but for any such point, ,),(
0

ytxh  so h is continuous 

as required. A check of the boundary conditions shows that 

  jf
xy

xfxh

*
1

2

1
or  1 -2x   0for              

           

2

1
  x  0or  1 -2x  0for        )2()0,(

0
















 

 

and  

1.    0or  1 - 2  1for         )()1,(  xxxfxh  

The other boundary conditions are obvious, and we know that [j] is the identity 

element of ).,(
01

yY  
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FIGURE 2.3 

 

}‖ 

FIGURE 2.4 

and that for ,12  xt  

.)1(
112

22
),(

0
yf

x

x
ftxh 












  
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Thush has the necessary continuity. The only question here concerns continuity 

at ,1t but we need only insert the limiting values of the arguments to complete 

the argument. Checking the boundary conditions, we see that 

0

1
( ) (2 )                          for 0 1-2x or 0    

2

1
                             for 2 -1 0 1-2  or   *

2

2 2 1
        (2 2 )for 0  2 -1or 1

1 2

h xo f x x

y x x x f f

x
f f x x x


    




    

 

       
  

 

while  

0
)1,( yxh  for all x satisfying the inequalities, 

We notice that the fundamental group as defined seems to depend upon 

the base pointy0 in Y, and in general this is true. If, for instance, Y is the union of 

an annular region in 2E  and a disjoint disc in E
2
 (see Fig. 2.4), then for y0 (any 

point in the annular region), ),(
01

yY is infinite cyclic, wheras if 
1

y is any point 

in the disc, ),(
11

yY consists only of the identity element. One notes that this 

example fails to be connected and might conjecture that for a connected space, 

the group ),(
01

yY and ,),,(
1011

yyyY  would necessarily be isomorphic. It is 

easy to modity the above example by simply adding a sin (1/x) curve as the 

broken line in Fig. 2.4, and so disprove this conjecture.  

3. Action on Groups 

Suppose G and G are groups, written multiplicatively. A homomorphism 

: 'f G G  is a map such that )().().( yfxfyxf  for all ;, yx it automatically 

satisfies the equations ')( eef  and 
11 )()(   xfxf , where e end e’ are the 

identities of G and G`, respectively, and the exponent-1 denotes the inverse. The 

kernel of f is the set 
1f  (e`); it is a subgroup of G. The image of f, similarly, is 

a subgroup of G`. The homeomorphism f is called a monomorphism if it is 
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injective (or equivalently, if the kernel of f consists of e alone). It is called an 

epimorphism if it is subjective; and it is called an isomorphism if it is bijective.  

Suppose G is a group and H is a subgroup of G. Let xH denote the set of all 

products xh, for h H; it is called a left coset of H in G. The collection of all 

such cosets forms a partition of G. Simiarly, the collection of all right cosets H x 

of H in G forms a partition of G. We call H a normal subgroup of G if 

1

  Hxhx  for each x  G and each h H. In this case, we have x.H = Hx for 

each x, so that our two partitions of G are the same. 

Definition: Let X be a space; let x0 be a point of X. A path in X that begins and 

ends at x0 is called a loop  based at x0. The set of pathhomotopy classes of loops 

based at x0, with the operation, is called the fundamental group of X relative to 

the base point x0. It is denoted )x(X,π
01

 

 

Theorem 3.1 The map ̂ is a group isomorphism. 

Proof. To show that ̂ is a homomorphism, we compute 

  ˆ ˆ[ ] ([ ])*f g   
^ ^

([ ] [ ] [ ])*[( ] [ ] [ ])** * *f g      

     
^

[ ] [ ] [ ] [ ]** *f g   

     
^
([ ] [ ]).*f g  

To show that 
^
 is an isomorphism, we show that if  denotes that path 

^
 , 

which is the reverse of  , then 
^

 is an inverse for 
^
 . We compute, for each 

element [h] of 
1 1

π (X,x ). 

  ˆ ˆβ([h]) [β] [h] [β] [α] [h] [α],* * * * 
 

  ˆˆ ˆ ˆα β([h]) [α] [α] [h] [α] [α] [h],* * *    
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A similar computation shows that ˆ ˆβ( ([ ]) [f]f  for each 
1 0

[f] π (X,x )  

Corollary  If X is path connected and 
0

x and
1

x are two points of X, then 

1 0
π (X,x ) is isomorphic to 

1 1
π (X,x )  

Suppose that X is a topological space. Let C be the path component of X 

containing 
0

x .It is easy to see that 
1 0 1
( , )C x 

0
(X,x ),since all loops and 

homotopies in X that are based at 
0

x must lie in the subspace C. Thus 
1 0
(X,x )

depends on only the path component of X containing 
0

x ; it gives us no 

information whatever about the rest of X. For this reason, it is usual to deal with 

only path-connected spaces when studying the fundamental group. 

It X is path connected, all the groups 
1
( , )X x are isomorphic, so it is 

temping to try to ―identify‖ all those groups with one another and to speak 

simply of the fundamental group of the space X, without reference to base 

point. The difficulty with this approach is that there is no natural way of  

identifying 
1 0

π (X,x ) with 
1 1

π (X,x );different paths  and  from 
0

x to 
i

x may 

give rise to different isomorphism between these groups. For this reason, 

omotting the base point can lead to error. 

It turns out that the isomorphism of 
1 0

π (X,x ) with 
1 1

π (X,x ) is idependent 

of path if and only if the fundamental group is abelian. This is a stringent 

requirement on the space X. 

Definition. Let 
0 0

h : ( , ) ( , )X x Y y be a continuous map. Define

 
1 0 1 0

: ( , ) ( , )h X x Y y   

by the equation 

  
*
([ ] [  o f ].h f h  

The map 
*

h is called the homomorphism induced by h, relative to the base point 

x0. 
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Theorem 3.2 If 
0 0

h:(X,x ) (Y,y ) and 
0 0

k:(Y,y ) (Z,z ) are continuous, 

then 
0

0 0
(K o h) k  h If i : (X,x ) (X, )* * * x  is the identity map, then 

*
I  is the 

identity homomorphism 

Proof The proof is a triviality. By definition 

  
*

(   ) ([ ]) (   )  ],k o h f k o h o f  

  
* * * * *

(k  o h ) ([ ])  K (h ([f ])) k  ([h o ]) [k o (h o f)]f f     

Similarly, 
*

i ([f]) [i o f] [f]   

 

Theorem 3.3 Let p : E B be a covering map; let 
0 0

p(e ) : b .  

(a) The homomorphism 
1 0 1 0*

p : ( , ) ( , )E e B b  is a monomorphism 

(b) Let 
1 0

H p.(π (E,e ).  The lifting correspondence  induces an injective 

map. 

  1

1 0 0
 :  π (B,b ) H p (b )   

of the collection of right cosets of H into p
-1

 (b0), which is bijective if E is path 

connected. 

(c) If f is a loop in B based at b0, then [f]  H if and only if f lifts to loop in E 

based at 
0
.e  

Proof. (a) Suppose h  is a loop in E at
0

e  and 
*

p ([ ])h  is the identity element. Let 

F be a path homotopy between p o h  and the constant loop. If F  is the lifting of 

F to E such that 
0

 (0,0) e ,F   and F  is a path homotopy between h  and the 

constant loop at 
0

e . 

(b) Given loop f and g in B, let f  and g  be liftings of them to E that begins 

at 
0
.e Then ([ ]) (1) and  ([ ]) (1).f f g g     We show that ([ ])  ([ ])f g   if 

and only if [ ] H [ ].*f g  
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First, suppose that [ ] H [ ].*f g  Then [ ] [h ],*f g  where h  p o h   

for some loop h  in E based at 
0
.e  Now the product *h g   is defined, and it is a 

lifting of *h g  Because [ ] [ ],*f h g  the lifting f  and *h g   which begin at
0
,e  

must end at the same point of E. Then f  and g  end at he same point of E, so 

that ([ ]) ([ ]).f g   
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