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ABSTRACT 

"We investigate the steady, ax symmetric, magneto hydrodynamic (MHD) flow of a viscous, 

Newtonian, incompressible, electrically-conducting fluid through an isotropic, homogeneous 

porous media situated in the annular zone between two concentric rotating cylinders in the 

presence of a radial magnetic field. The fluid in question is a viscous, Newtonian, 

incompressible, electrically-conducting fluid. The tangential and axial momentum equations, 

together with their related no-slip boundary conditions, are made non-dimensional by the use of 

transformation variables, which are also presented. By utilizing the Bessel and Lommel 

functions, one can arrive at solutions in closed-form. It was discovered that the axial velocity, 

denoted by UZ, drops by a significant amount as the Hartmann number, denoted by Ha, 

increases with the radial coordinate. Additionally, the profiles become progressively curved as 

the magnetic field becomes stronger. On display and under consideration here are illustrations 

and discussions of how the velocity is affected by newly discovered parameters such as third-

grade parameters, second-grade parameters, and the Reynolds number. An equation for the 

skin-friction coefficient has been calculated and will now be provided. It was discovered that the 

thickness of the boundary layer for both velocity and momentum increased when the curvature 

parameter was increased. When compared to Newtonian and second-grade fluids with and 

without MHD effects for the instances (i) extending cylinder and (ii) flat plate, the velocity 

profile of third-grade fluid is greater than that of Newtonian and second-grade fluids". 
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INTRODUCTION 

In engineering science and applied mathematics, the study of hydro magnetic fluxes in rotating 

systems is predicted to remain a major area of focus. Analytical and numerical solutions to a 

wide range of geometric problems have been reported in a number of academic papers. These 

answers have been put forth. There are several uses that profit from the existence of such flows, 

including magneto hydrodynamic (MHD) energy producers, "rocket propulsion control, crystal 

growth technologies, astrophysical plasma fluid dynamics, and tribological regulation in moving 

machine components. Transport in annular regimes, such as the annulus intercalated between 

rotating spheres or rotating cylinders, or even in rectangular annular ducts, has been the subject 
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of very little investigation. Flow in rotating annular areas is seen often in the oil and gas 

industry during the drilling process. An accurate simulation of the flow of the drilling mud in 

the annular area between the well wall and the drill pipe is necessary for evaluating the 

variability in the mud pressure within the well-bore, the frictional pressure drop, and the 

efficiency of the transport of the rock drill cuttings". It is also possible to utilize magnetic fields 

to control the outflow of fluid when that fluid is electrically conducting, sometimes known as 

ionized. The use of radial magnetic fields on concentric rotating cylinder systems can also 

provide fine tuning for the production of targeted chemicals. Modern computational fluid 

dynamics (CFD) techniques have greatly improved our ability to model hydromagnetic systems, 

but there is still a vast body of work to be done in terms of mathematical analysis. Such studies 

also serve as a solid reference point against which more complex simulations may be compared 

and CFD results can be validated. Someone in the late 1950s looked on fully formed laminar 

MHD flow in an annular channel, and their findings were crucial. This finding sparked a 

newfound fascination with hydromagnetic flow in revolving annuli. Wall suction and injection 

were studied for their potential impact on the Globe problem by both Jain and Mehta. Uberoi 

and Chow looked at the hydromagnetic viscous flow in a pipe annulus in more detail. When a 

radial magnetic field is applied to a system consisting of two concentric rotating cylinders, Nath 

found closed-form solutions for fully developed axial flow. These results showed that when the 

Hartmann number grew, both the axial and tangential velocity components decreased 

significantly. "Hydromagnetic Newtonian flow in a rectangular annular channel was extensively 

studied by Baylis and Hunt. This builds on the work of Hunt and Stewartson, who proposed a 

similar concept in which conducting walls ran in the direction of the magnetic field and non-

conducting walls ran perpendicular to it. examined the MHD flow between two concentric 

rotating cylinders in a uniform magnetic field, with a non-erodable and non-conducting porous 

lining on the inner wall of the outer cylinder, and discussed the effects of the ratio of the 

cylinder velocities, the slip parameter, the porosity parameter, and the Biot number on flow 

variables. Basu and Mandal solved the transient hydromagnetic flow between two co-axial 

cylinders using closed form finite Hankel transform solutions. These answers accounted for the 

influence of an induced magnetic field and showed that, as the magnetic field intensity grew, so 

did the frictional coupling per unit length. studied the presence of a radial magnetic field and its 

effect on the magnetohydrodynamic flow in an annular channel. In a computer study of the 

hydromagnetic stability of dissipative Couette flow in a rotating narrow gap annulus, it was 

shown that the presence of a magnetic field delays the onset of instability. The existence of 

conducting walls accentuates this effect more so than the presence of non-conducting walls. 

studied the magnetohydrodynamic circulation in the annulus generated by the rotation of 

eccentric cylinders. explored, computationally, the impact of wall mass flux on MHD 

viscoelastic flow in a cylinder-shaped annulus. Magnetohydrodynamic heat transport and flow 

in a liquid metal-gas annular regime under a transverse magnetic field was addressed by Li et al. 

(Li et al., 2005)".  

MATHEMATICAL MODEL 

Let's have a look at the (r, z)-coordinated "Newtonian steady incompressible electrically 

conducting viscous axial MHD flow between two insulating cylinders filled with an isotropic 

homogenous porous material that is completely saturated with the fluid". We shall pretend the 
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flow is incompressible and electrically conducting. According to Shercliff (Shercliff 1965), the 

effects of magnetic induction can be neglected if the magnetic Reynolds number is assumed to 

be small. The weak radial magnetic field imposed from outside can also mean that Hall current 

and ionslip current effects can be ignored. The electrical field dissipates everywhere and E is 

equal to zero when there is no charge separation and the body surface is not charged. Taylor 

vortices cannot form until "an axial pressure gradient is applied, and the cylinders' rotational 

speeds are lower than the critical value". Taylor vortices are the desired result of this particular 

set of conditions. Figure 1 below illustrates the workout plan that will be followed. 

 

Figure 1: Both the Coordinate System and the Physical Model 

Regardless of whether or not fully developed flow has been attained, "Nath (Nath 1970) showed 

that the tangential velocity profile generated in a viscous liquid by rotating cylinders (in the 

absence of Taylor vortex motions) transforms into a function of the axial coordinate when an 

axial velocity is superimposed". An annulus is getting close to the completely formed condition 

when its tangential profile stops being reliant on its axial position. Constant electric current 

flowing perpendicular to the axis of the coaxial cylinders generates a radial magnetic field (Br). 

In order to generate the radial magnetic field, the cylinders must terminate in perfect electrodes 

that are coupled to a load. Nath (Nath 1970) suggests that a permeability core inside the annulus 

and a permeable cylinder shell outside the annulus can also be used to achieve the goal of 

providing the required magnetic field. There are two permeable parts in this arrangement. 

Therefore, magnetic flux lines, if they took these porous paths, would always converge on a 

point far from the regime of interest. 

Between the paths and the annulus channel are discs of permanently magnetized material that 

would act as the "source" of the magnetic flux. "Nath (Nath 1970) and the Darcy drag force 

model illustrate how to simplify the Navier-Stokes equations in cylindrical coordinates for the 

magnetohydrodynamic saturated porous regime to the following form. Nath (1970) and Bég et 

al. (2009a, 2009b) provide evidence for this claim". 
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where "p is hydrostatic pressure, is fluid density, is fluid electrical conductivity, v is fluid 

kinematic viscosity, and K is porous medium permeability (isotropic hydraulic conductivity, 

meaning it is the same in both the r and z directions). Nath's study (Nath 1970) provided the 

basis for Equation (4), which implies that the radial"  

Br, the component of the magnetic field, is proportional to  When the radius of the inner 

cylinder is r, we may infer that Br = A/r because Br = A/a in this case. To find solutions that are 

"independent of the dimensions of the regime, we introduce the following non-dimensional 

variables": 

 

 

 

"in where P denotes the dimensionless pressure, U denotes the dimensionless tangential velocity, 

Uz denotes the dimensionless axial velocity, R denotes the dimensionless radial coordinate, Z 

denotes the dimensionless axial coordinate, denotes the magnetic field ratio, B0 denotes the 

typical magnetic induction, and Ha denotes the axial coordinate of the dimensionless pressure". 

represents the Hartmann number, The rotating Reynolds number is denoted by "Re.",  is the 

dimensionless axial pressure gradient, is the ratio of the cylinder's outer to its inner radius, and 

Da is the Darcy number. The following dimensionless equations are derived by adding variable 

(5) to equations (1) through (4): 
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The stated boundary conditions that are acceptable include the following: 

 

 

 

3. Solution procedure 

Homotopy is the foundational idea in topology that gave rise to homotopy analysis. Two 

functions are said to be homotopic if they may be continually transformed into each other. Two 

continuous functions f1 and f2 from topological space X to topological space Y are homotopic if 

and only if F is a continuous map and f1 is homotopic to f2. 

 

 

such that for each x 2 X 

 

If this is the case, then we say that map F is homotopic between functions f1 and f2. In 1992, 

Liao proposed a method of homotopy analysis that might be "used to solve the very nonlinear 

equations. This method is independent of any size- or scale-related physical properties. 

Homotopy is a continuous" transformation that may be applied to a function or equation. 

Compared to other methods, it offers a number of advantages. First, it doesn't matter how large 

or tiny the input parameters are; second, it guarantees that the series solution will converge; and 

third, it gives you a lot of leeway in choosing "the base function and the linear operator. This 

flexibility and freedom has been invaluable as we work to address some very complex 

problems. The linear operator used in the homotopy analysis method is taken from the linear 

part of the differential equation, as should be noted. However, to ease rapid study of 

convergence in a semi-infinite domain, it is advised to do it in a way that the solution appears as 

exponential functions. Homotopy analysis necessitates a guess for f0 and g and a linear operator 

Lf in the following forms": 

 

whose characteristics include those listed below: 
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where Ci ð Þ i ¼ 1 3 are the constants. 

Zeroth-order deformation problem 

The zeroth-order deformation equation is 

 

Assuming the auxiliary convergence function Hf is equal to 1, and in the case when the 

 

Convergence of the developed solution 

An additional parameter, hf, is involved in the 23rd homotopy series solution. Managing and 

controlling the convergence of the series solution (23) is largely dependent on this parameter, as 

stated above. The h-curve is shown in Figure 2 at the 13th order of approximation, which yields 

an adequate range of hf. The ranges of 1:1 to 6 hf and 0:2 to 6 hf are demonstrated in Fig. 1. In 

addition, Table 1 displays the results of an analysis of the series solution's convergence. Using 

this table, we can demonstrate "that the series solution converges up to the 12th order of 

approximation". 

Results and discussion 

We have offered a discussion of the influence that a variety of intriguing physical qualities have 

on the velocity field through the use of graphs. This talk was about how the velocity field is 

affected by the characteristics. 
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Figure 1 Physical flow model. 

Table 1 Convergence of the homotopy solution occurs when the following values are true: 

a1 = 0:1, a2 = 0:2, b = 0:05, c = 0:2, M = 0:5, and Re = 0:5. 

 

 

Figure 2 at the thirteenth order of approximation, the h curve for f. 

Numerical values of the skin friction coefficient Re1=2 z Cf are provided for convenience, and 

the effect of dimensionless variables on this quantity is analyzed. 

Figure 3 depicts a possible change in the impact of the magnetic parameter M on the scalar 

velocity f 0 g. It has been observed that the profile of velocities decreases with increasing M. In 
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addition, the momentum boundary layer thins out. Reduced velocities and momentum at the 

boundary are the result of the Lorentz force M2 f 0 g that results from an external magnetic 

field. This is because the Lorentz force exerts a real, material, and tangible influence. The time-

dependent variation of the shear thickening/thinning parameter is shown in Figure 4. The 

velocity and momentum boundary layer thickness is shown to decrease with increasing b. The 

figure below shows an example of this. So, it would appear that M and b behave similarly. 

Figure 5 displays, for a variety of values of a1, the variation of f0g with respect to g. This 

diagram shows how the thickness of the momentum boundary layer and the velocity profile both 

grow as a1 increases. Similar results can be obtained for the variable a2 in Fig. 6. Fig. 7 was 

made to investigate how the curvature parameter c influences the velocity distribution. Images 

like this one show that when c, the value of the curvature parameter, increases, the velocity f 0 g 

and the thickness of the momentum boundary layer both grow. A smaller radius for the cylinder 

results from increasing the curvature parameter c. The resistance to the flow of the fluid likewise 

lowers because the area of the cylinder in contact with the fluid shrinks. From a purely physical 

perspective, this is why we see this occurrence. The result is a steeper profile of increasing 

velocity. Figure 8 provides a more in-depth explanation of the influence of Reynolds number Re 

on the velocity profile f(n) vs. g. Raising the Reynolds number, Re, has the following effect: 

 

Figure 3 The following diagram illustrates the connection between the magnetic parameter 

M and the velocity component f (n). 

 

Figure 4 Below is a graph depicting the third-grade parameter b's connection with the 

velocity component f (n). 
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Figure 5 Relating the second-grade parameter a1 to the velocity term f (n) graphically. 

 

Figure 6 The following diagram illustrates the link that exists between the velocity 

component f (n) and the value of g for the second-grade parameter a2. 

 

Figure 7 The diagram below illustrates the link that exists between the curvature 

parameter c and the velocity component f (n). 
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Figure 8 The relationship between the velocity component f (n) and the Reynolds number 

g is seen below. Re. 

because the profile's overall velocity has slowed down as a result. "In addition to that, the 

thickness of the momentum barrier layer goes down as it moves away. In the presence of a 

magnetic parameter, the viscous, second-grade, and third-grade fluid velocities along a stretched 

cylinder are compared to one another in Fig. 9, which is a graphic that depicts the comparison. 

The findings of the research indicate that viscous fluid and second-grade fluid both have 

velocities that are much lower than those of third-grade fluid, which has a significantly higher 

velocity. The viscous fluid, on the other hand, flows at a significantly slower rate in comparison 

to the second-grade fluid, which has a higher velocity. A comparison between fluid at the third-

grade level, fluid at the second-grade level, and viscous fluid" 

 

Figure 9 In the presence of magnetic effects and with c equal to 0.2, the velocity profile for 

viscous, second-grade, and third-grade fluids is shown below. 
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Figure 10 The velocity profile for viscous, second-grade, and third-grade fluids is 

illustrated below with the value of c equal to 0 when they are subjected to magnetic effects 

as described in the previous sentence. 

Figure 10 illustrates the velocities together with the magnetic parameter M as they travel across 

a flat plate. However, the velocity of second-grade fluid is lower than that of third-grade fluid 

but higher than that of viscous fluid, whereas the velocity of third-grade fluid is lower than that 

of second-grade fluid but higher than that of viscous fluid. Viscous fluid has a velocity that is 

lower than that of second-grade fluid but higher than that of third-grade fluid. 

Conclusion  

In order to explore the hydromagnetic flow of third-grade fluid over a stretched cylinder, the 

homotopic approach is applied as a research technique. The following table presents the results 

of this inquiry, with an emphasis on the most significant discoveries. The shear 

thinning/thickening parameter b and the magnetic parameter M both need to be raised for the 

velocity profile to go in the other direction, which is downward. When the Reynolds number Re 

is increased, the radial velocity f 0 and the thickness of the momentum boundary layer are both 

functions that decrease. It may be said that the effects that the dimensionless parameters a1 and 

a2 have on the radial velocity f 0 are relatively comparable to one another in terms of their 

qualitative manifestations. When the values of the variables a1, b, Re, c, and M are all 

decreased, while the value of the variable a2 is increased, it is demonstrated that the skin friction 

coefficient, Re1=2 z Cf, has very small values. In both the flat plate and the cylinder, the third-

grade fluid results in a higher increase in the velocity profile, regardless of whether or not the 

magnetic parameter is present. This is in contrast to the velocity profile for the viscous fluid and 

the second-grade fluid, which can be found below. 
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