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Abstract: In this paper, we consider several situations stemming from the applications, and 

the mathematical modeling of which involves partial differential equation problems. Our 

primary focus in these research projects is on the good qualities and consequences of a 

specific partial differential equation's solution. The homogeneous one-dimensional wave 

equation in particular piques our interest in the mathematical modelling of the consistency 

and well-posedness of the solution or solutions to certain PDEs. A function u = u(x, y, z, t) 

will be used to measure different physical quantities. We examine the homogeneous one-

dimensional wave equation via the lens of mathematical modelling of partial differential 

equations. Specifically, we investigate the solution's well-posedness and consistency (Guo 

and Zhang, 2007). The method of change of variable is to be used to derive the d' Alembert's 

general solution, which will ultimately lead us to the d' Alembert's formula for the wave 

equation solution. Though the classical theory of partial differential equations deals almost 

completely with the well-posed, ill posed problems can be mathematically and scientifically 

interesting. After that, we analyzed the results using the answer we had acquired, displayed 

the behavior of our results in a table, and came to the conclusion that the idea of a well-posed 

issue is crucial in applied mathematics. 

 

Keyword: Partial Derivatives; PDE, Modelling 

 

1. Introduction 

In general, it may be impossible or at the very least difficult to find the exact solution to 

partial differential equation problems. Partial differential equations were initially studied as a 

means of examining physical science models. Physical rules like momentum, conservation 
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laws, balancing forces (Newton's law), and others are the usual source of PDEs (Strauss, 

2008). This paper derives the string's equation of motion, which takes the form of a second-

order partial differential equation, under specific assumptions. The one-dimensional wave 

equation, or governing partial differential equation, depicts the transverse vibration of an 

elastic string (King and Billingham, 2000). The change of variable method has been used to 

obtain the analytical answer.One of the most important mathematical puzzles of the middle of 

the eighteenth century was the solution to the wave equation. D'Alembert derived and 

investigated the wave equation for the first time in 1746. He presented the equation for a one-

dimensional wave. 

∂2𝑢

∂𝑡2
− 𝑐2

∂2𝑢

∂𝑥2
= 0…….(1) 

We next generalized the wave equation to two and three dimensions, i.e. 

∂2𝑢(𝑥,𝑡)

∂𝑡2
= Δ𝑢(𝑥, 𝑡)…….(2) 

Everyplace 

Δ = ∑𝑖−1
3  

∂2

∂𝑥𝑖
2…..(3) 

In a number of works, the wave equation's solution was found in a variety of ways (Benzoni 

Gavage and Serre, 2007). Models of the most fundamental theories underpinning physics and 

engineering are frequently created using partial differential equations (Lawrence, 2010). 

There is no one theorem that is essential to the subject, in contrast to the theory of ordinary 

differential equations, which depends on the fundamental existence and uniqueness theorem. 

Rather, distinct theories are used to every major class of partial differential equations that 

frequently occur. It is important to note that differential equations of either first or second 

order, with the latter being by far the more common, are the majority when they arise in 

applications, science, engineering, and mathematics itself. A partial derivative of the 

independent variable, which is an unknown function in multiple variables, is found in a PDE 

x, y, t, 

∂𝑢

∂𝑥
= 𝑢𝑥 ,

∂𝑢

∂𝑦
= 𝑢𝑦&

∂𝑢

∂𝑡
= 𝑢𝑡…….(4) 

The universal first order PDE for u(x, t) can be expressed as 

𝐹 𝑥, 𝑡, 𝑢 𝑥, 𝑡 , 𝑢 𝑥, 𝑡 , 𝑢 𝑥, 𝑡  = 𝐹 𝑥, 𝑡, 𝑢, 𝑢𝑥 , 𝑢𝑡 = 0…… . . (5)  

While PDEs in multiple independent variables can be studied, PDEs in two independent 

variables will be the main focus of this research project. 

2. Statement of the problem 
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Our primary focus in these research projects is on the good qualities and consequences of a 

specific partial differential equation's solution. The homogeneous one-dimensional wave 

equation in particular piques our interest in the mathematical modelling of the consistency 

and well-posedness of the solution or solutions to certain PDEs. A function u = u(x, y, z, t) 

will be used to measure different physical quantities. This function may depend on all spatial 

variables and time or only on a subset of them (Guo 2009). The shortened notation that 

follows will be used to represent the partial derivatives of u: 

 

𝑢𝑥 =
∂𝑢

∂𝑦
, 𝑢𝑥𝑥 =

∂2𝑢

∂𝑥2
, 𝑢𝑥𝑦 =

∂2𝑢

∂𝑥 ∂𝑦
, 𝑢𝑥𝑡 =

∂2𝑢

∂𝑥 ∂𝑡
, 𝑢𝑡 =

∂𝑢

∂𝑡
…… . (6) 

3. Objectives 

 To find a solution, use the method of change of variable to assess the homogeneous one-

dimensional wave equation's solution for consistency and well-posedness. 

 Application of the Partial Differential Equations using the D' Alembert's formula 

 

4. METHODS 

We will look at a specific kind of problem related to partial differential equations that are 

hyperbolically linear. This issue will be discussed in relation to the homogeneous one-

dimensional wave equation of the type 

∂2𝑢

∂𝑡2
− 𝑐2

∂2𝑢

∂𝑥2
= 0………(7) 

where C is a constant and the independent variables are x and t. 

This equation is the model for a class of hyperbolic differential equations and is known as the 

homogeneous one-dimensional wave equation. In practical applications, hyperbolic equations 

are used to simulate various types of waves, including gravitational, elastic, electromagnetic, 

and acoustic waves. When compared to parabolic and elliptic PDEs, the qualitative 

characteristics of hyperbolic PDEs are significantly different.Undoubtedly, one of the most 

significant classical equations in mathematical physics is the wave equation. We examine the 

homogeneous one-dimensional wave equation via the lens of mathematical modelling of 

partial differential equations. Specifically, we investigate the solution's well-posedness and 

consistency (Guo and Zhang, 2007). The method of change of variable is to be used to derive 

the d'Alembert's general solution, which will ultimately lead us to the d'Alembert's formula 

for the wave equation solution. 
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5. Mathematical Formulation 

There are numerous physical applications for the wave equation, ranging from sound waves 

in air to magnetic waves in the Sun's atmosphere. On the other hand, waves on a stretched 

elastic thread are the easiest systems to picture and explain. 

The string is initially horizontal and has two fixed ends, let's say a left end (L) and a right end 

(R): When we shake the string from end L onward, we see a wave propagate across the 

string. The goal is to attempt to calculate the string's vertical displacement from the X-axis, 

u(x,t), as a function of location X. Additionally, timet: In other words, the displacement from 

equilibrium at Position X and time t is represented as u(x,t): A small portion of the string 

moved between Points P and Q is 

Where 

 

 The angle formed by the string and a horizontal line at point x and time t is denoted by 

θ(x,t). 

 The string's tension at position x and time t is given by T(x,t); 

 The mass density of the string at location x is given by ρ(x):  

To get the wave equation, a few simplifying assumptions have to be made: The mass of the 

string between points P and Q is equal to ρ times its length, where Δ is the string's length and 

is defined by (7) since the string's density, ρ, stays constant.  

Δ𝑠 =  (Δ𝑥)2 + (Δ𝑢)2 = Δ𝑥 1 +  
Δ𝑢

Δ𝑥
 
2

≈ Δ𝑥  
∂𝑢

∂𝑥
 
2
….(8) 

It is expected that the displacement, u(x,t), and its derivatives are tiny in order that 

Δ𝑠 ≈ Δ𝑥…..(9) 
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and the mass of the portion of the string is 𝜌Δ𝑥 

We may now separate the forces into their vertical and horizontal components.- Horizontal: 

The small string's net horizontal force is  

𝑇(𝑥 + Δ𝑥, 𝑡)cos⁡𝜃(𝑥 + Δ𝑥, 𝑡) − 𝑇(𝑥, 𝑡)cos⁡𝜃(𝑥, 𝑡)…..(10) 

As there isn't any horizontal motion, we have to 

 

𝑇(𝑥, 𝑡)cos⁡𝜃(𝑥, 𝑡) = 𝑇(𝑥 + Δ𝑥, 𝑡)cos⁡𝜃(𝑥 + Δ𝑥, 𝑡) = 𝑇 ……(11) 

Vertical:  At P the tension force is −𝑇(𝑥, 𝑡)sin⁡𝜃(𝑥, 𝑡) where as at 𝑄 the 

Force is 𝑇(𝑥 + Δ𝑥, 𝑡)sin⁡𝜃(𝑥 + Δ𝑥, 𝑡).  

Newton's Law of Motion follows. 

Acceleration of mass applied forces provides 

𝜌Δ𝑥
∂2𝑢

∂𝑡2
= 𝑇(𝑥 + Δ𝑥, 𝑡)sin⁡𝜃(𝑥 + Δ𝑥, 𝑡) − 𝑇(𝑥, 𝑡)sin⁡𝜃(𝑥, 𝑡).

𝜌

𝜌
Δ𝑥

∂2𝑢

∂𝑡2
=

𝑇(𝑥+Δ𝑥,𝑡)sin⁡𝜃(𝑥+Δ𝑥,𝑡)

𝑇(𝑥+Δ𝑥,𝑡)sin⁡𝜃(𝑥+Δ𝑥,𝑡)
= −

𝑇(𝑥,𝑡)sin⁡𝜃(𝑥,𝑡)

𝑇(𝑥,𝑡)cos ⁡𝜃(𝑥,𝑡)

tan⁡𝜃(𝑥 + Δ𝑥, 𝑡) − tan⁡𝜃(𝑥, 𝑡)

 But 

tan⁡𝜃(𝑥, 𝑡) = lim
Δ𝑥→0

 
Δ𝑢

Δ𝑥
= 𝑢𝑥(𝑥, 𝑡).

......(12) 

tan⁡𝜃(𝑥 + Δ𝑥, 𝑡) = 𝑢𝑥(𝑥 + Δ𝑥, 𝑡)….(13) 

we get 

𝜌

𝑇
Δ𝑥𝑢𝑡𝑡(𝑥, 𝑡) = 𝑢𝑥(𝑥 + Δ𝑥, 𝑡) − 𝑢𝑥(𝑥, 𝑡)…..(14) 

Separating by Δ𝑥 and letting Δ𝑥 → 0 

𝜌

𝑇
Δ𝑥𝑢𝑡𝑡 (𝑥, 𝑡) = 𝑢𝑥𝑥 (𝑥, 𝑡)

𝑢𝑡𝑡(𝑥, 𝑡) = 𝑐2𝑢𝑥𝑥 (𝑥, 𝑡)

 Where 𝑐2 =
𝑇

𝜌
,

……(15) 

This partial differential equation represents the string's transverse vibration. The one-

dimensional wave equation is another name for it. 

6. Homogeneous one-dimensional wave equation 

Real-world physical conditions typically occur at fixed intervals. For two reasons, we can 

justify taking x on the entire real line. From a physical standpoint, the border won't affect you 

much if you are seated far away from it; however, the solutions found in this chapter are still 

applicable up until that point. The lack of a boundary is a significant simplification 

mathematically. Without the complexities of boundary conditions, the most basic properties 

of the PDEs can be discovered with the greatest ease. 
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utt = c2uxx  for −∞ < 𝑥 < ∞, 𝑡 > 0…….(16) 

𝑢(𝑥, 0) = 𝑓(𝑥) for −∞ < 𝑥 < ∞ 

𝑢𝑡(𝑥, 0) = 𝑔(𝑥) for −∞ < 𝑥 < ∞ 

Solution via change of variable 

The equation is hyperbolic, thus we establish a new variable ε, η by 

𝜀 = 𝑥 + 𝑐𝑡
𝜂 = 𝑥 − 𝑐𝑡

….(17) 

we have 

∂

∂𝑡
=

∂

∂𝜀
⋅

∂𝜀

∂𝜂
+

∂

∂𝜂
⋅
∂𝜂

∂𝑡

= 𝐶
∂

∂𝜀
+

∂

∂𝜂
(−𝐶)

……(18) 

𝐶  
∂

∂𝜀
−

∂

∂𝜂
  

∂2

∂𝑡2
= 𝐶  

∂

∂𝜀
−

∂

∂𝜂
 𝐶  

∂

∂𝜀
−

∂

∂𝜂
 

∂2

∂𝑡2
= 𝐶2  

∂

∂𝜀
−

∂

∂𝜂
  

∂

∂𝜀
−

∂

∂𝜂
 

∂2

∂𝑡2
= 𝐶2  

∂2

∂𝜀2
−

2 ∂2

∂𝜀 ∂𝜂
+

∂2

∂𝜂2
 

…..(19) 

Likewise 

∂

∂𝑥
=

∂

∂𝜀
⋅

∂𝜀

∂𝑥
+

∂

∂𝜂
⋅
∂𝜂

∂𝑥
……(20) 

From the coordinate equations above, we have 

∂

∂𝑥
=

∂

∂𝜀
⋅ 1 +

∂

∂𝜂
⋅ 1

∂

∂𝑥
=

∂

∂𝜀
+

∂

∂𝜂

…..(21) 

So, 

∂2

∂𝑥2
=  

∂

∂𝜀
+

∂

∂𝜂
  

∂

∂𝜀
+

∂

∂𝜂
 

=
∂2

∂𝜀2
+

2 ∂2

∂𝜀 ∂𝜂
+

∂2

∂𝜂2

…..(22) 

s.t. 

𝑈(𝑥, 𝑡) = 𝑊(𝜀, 𝜂) 

Later 

𝑈𝑡𝑡 − 𝐶2𝑈𝑥𝑥 = 0……(23) 

Converts 

𝐶2 𝑊𝜀ℰ − 2𝑊𝜀𝜂 +𝑊𝜂𝜂  − 𝐶2 𝑊 + 2𝑊𝜀𝜂 +𝑊𝜂𝜂  = 0 

⇒ −4𝐶2𝑊𝜀𝜂 = 0……..(24) 

⇒ 𝑊𝜀𝜂 = 0 
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∂2𝑤

∂𝜀 ∂𝜂
= 0…… . . (25)  

It is easy to find the general solution of the equation (4) by integrating it twice. 

First suppose you integrate with respect to E and notice that the constant of integration must 

depend on η to get,s 

∂𝑤

∂𝜂
= 𝐺(𝜂)…….(26) 

Integrate now with regard to η and note that ε determines the integration constant. 

𝑤 = ∫
0

𝜂
 𝐺(𝜂)𝑑𝜂 + 𝐹(𝜀)…..(27) 

let 

∫
0

𝜂
 𝐺(𝜂)𝑑𝜂 = 𝐺(𝜂)….(28) 

So that 

𝑤 = 𝐺(𝜂) + 𝐹(𝜀)…..(29) 

Memory that we misshapen 

𝑈(𝑥, 𝑡) = 𝑤(𝜀, 𝜂)…..(30) 

So 

𝑈(𝑥, 𝑡) = 𝐹(𝑥 + 𝑐𝑡) + 𝐺(𝑥 − 𝑐𝑡)…..(31) 

Given; 

𝑢(𝑥, 0) = 𝑓(𝑥) for −∞ < 𝑥 < ∞ 

𝑢𝑡(𝑥, 0) = 𝑔(𝑥) for −∞ < 𝑥 < ∞…(32) 

𝑡 = 0 

𝑈(𝑥, 0) = 𝑓(𝑥) = 𝐹(𝑥) + 𝐺(𝑥) 

𝑈(𝑥, 0) = 𝐹(𝑥) + 𝐺(𝑥) = 𝑓(𝑥)….(33) 

Next, we distinguish (9) with regard to t using the chain rule, setting t=0 to obtain 

𝑈𝑡(𝑥, 0) = 𝐶𝐹′(𝑥) + 𝐶𝐺 ′(𝑥)…..(34) 

𝐶𝐹′(𝑥) − 𝐶𝐺 ′(𝑥) = 𝑔(𝑥) 

𝐶 𝐹′(𝑥) − 𝐺 ′(𝑥) =
𝑔(𝑥)

𝐶
……(35) 

𝐹(𝑥) − 𝐺(𝑥) = ∫
0

𝑥
 
𝑔(𝑠)

𝐶
𝑑𝑠 + 𝑘….(36) 

2𝐹(𝑥) = ∫
0

𝑥
 
𝑔(𝑠)

𝐶
𝑑𝑠 + 𝑘 + 𝑓(𝑥) 

𝐹(𝑥) =
1

2
∫

𝐶

𝑥
 𝑔(𝑠)𝑑𝑠 +

𝑘

2
+

𝑓(𝑥)

2
….(37) 

Also subtracting 

2𝐺(𝑥) = −
1

𝑐
∫
0

𝑥
 𝑔(𝑠)𝑑𝑠 − 𝑘 + 𝑓(𝑥) 
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𝐺(𝑥) = −
1

2𝑐
∫
0

𝑥
 𝑔(𝑠)𝑑𝑠 −

𝑘

2
+

𝑓(𝑥)

2
…..(38) 

Recall that 

𝑈(𝑥, 𝑡) = 𝐹(𝑥 + 𝑐𝑡) + 𝐺(𝑥 − 𝑐𝑡) 

𝐹(𝑥 + 𝑐𝑡) =
𝑓(𝑥+𝑐𝑡)

2
+

1

2𝑐
∫
0

𝑥+𝑐𝑡
 𝑔(𝑠)𝑑𝑠 +

𝑘

2
….(39) 

And 

𝐺(𝑥 − 𝑐𝑡) =
𝑓(𝑥 − 𝑐𝑡)

2
+
1

2𝑐
∫

𝑥−𝑐𝑡

0
 𝑔(𝑠)𝑑𝑠

𝑘

2
 

𝑈(𝑥, 𝑡) = 𝑓(𝑥 + 𝑐𝑡) + 𝑓(𝑥 − 𝑐𝑡) +
1

2𝑐
∫

𝑥−𝑐𝑡

𝑥+𝑐𝑡
 𝑔(𝑠)𝑑𝑠…..(40) 

Thus d'Alembert's formula represents the unique solution of above equations. 

 

7. Result 

Considering equation (9) obtained that is, 

𝑈 𝑥, 𝑡 = 𝑓 𝑥 + 𝑐𝑡 + 𝑓 𝑥 − 𝑐𝑡 +
1

2𝑐
  

𝑥+𝑐𝑡

𝑥−𝑐𝑡

 𝑔 𝑠 𝑑𝑠 … . . (41)  

and the standard wave equation; 

utt = c2uxx  for −∞ < 𝑥 < ∞, 𝑡 > 0 

𝑢(𝑥, 0) = 𝑓(𝑥) for −∞ < 𝑥 < ∞ 

𝑢𝑡(𝑥, 0) = 𝑔(𝑥) for −∞ < 𝑥 < ∞ 

Let solve some problems; 

 

 Problematic (1) 

𝑈𝑡𝑡 − 25𝑈𝑥𝑥 = 0 − ∞ < 𝑥 < ∞, 𝑡 > 0 

𝑈(𝑥, 0) = 𝑓(𝑥) − ∞ < 𝑥 < ∞, 

𝑈(𝑥, 0) = sin⁡𝑥 − ∞ < 𝑥 < ∞,…..(42) 

𝑈𝑡(𝑥, 0) = 0 − ∞ < 𝑥 < ∞ 

Explanation 

Comparing through the standard wave equation 

𝑈𝑡𝑡 − 𝐶2𝑈𝑥𝑥 = 0 − ∞ < 𝑥 < ∞, 𝑡 > 0 

𝑈(𝑥, 0) = 𝑓(𝑥) − ∞ < 𝑥 < ∞, 

𝑈𝑡(𝑥, 0) = 𝑔(𝑥) − ∞ < 𝑥 < ∞….(43) 

Consequently from the above question 

𝐶2 = 25 ⇒ 𝐶 = 5 

𝑓(𝑥) = sin⁡𝑥 
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𝑔(𝑥) = 0 

Consequently, using 

𝑈(𝑥, 𝑡) =
1

2
[𝑓(𝑥 + 𝑐𝑡) + 𝑓(𝑥 − 𝑐𝑡)] +

1

2𝑐
∫

𝑥−𝑐𝑡

𝑥+𝑐𝑡
 𝑔(𝑥)𝑑𝑠……(44) 

We need 

𝑈(𝑥, 𝑡) =
1

2
[sin⁡(𝑥 + 𝑐𝑡) + sin⁡(𝑥 − 𝑐𝑡)] +

1

2𝑐
∫

𝑥−𝑐𝑡

𝑥+𝑐𝑡
 0𝑑𝑠 

𝑈(𝑥, 𝑡) =
1

2
[sin⁡(𝑥 + 𝑐𝑡) + sin⁡(𝑥 − 𝑐𝑡)] + 0 

𝑈(𝑥, 𝑡) =
1

2
[sin⁡(𝑥 + 5𝑡) + sin⁡(𝑥 − 5𝑡)]…(45) 

Recall that 

sin⁡(𝐴 + 𝐵) + sin⁡(𝐴 − 𝐵) = 2sin⁡ 
𝐴+𝐵

2
 cos⁡ 

𝐴−𝐵

2
 ….(46) 

Therefore, above equation yield 

𝑈(𝑥, 𝑡) =
1

2
 2sin⁡ 

𝑥−5𝑡+𝑥−5𝑡

2
 cos⁡ 

𝑥+5𝑡−𝑥+5𝑡

2
  ……(47) 

Hereafter 

𝑈(𝑥, 𝑡) = sin⁡𝑥cos⁡5𝑡……(48) 

Table 1: viewing the standards of 𝒖(𝒙, 𝒕) at fluctuating 𝒙 and 𝒕 

S/N 𝑢(𝑥, 𝑡) 𝑥 𝑡 

1 0.0672 50 0 

 

2 0.1510 100 2 

3 0.2332 150 4 

4 0.2952 200 6 

5 0.3227 250 8 

6 0.3204 300 10 

7 0.2858 350 12 

8 0.2188 400 14 

9 0.1218 450 16 

10 0.010 500 18 
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Table 2: Viewing consequence of 𝒖(𝒙, 𝒕) at fixed 𝒙 and changing 𝒕 

S/N 𝑢(𝑥, 𝑡) Fixed 𝑥 Varying 𝑡 

1 0.0572 5 0 

2 0.0849  2 

3 0.0719  4 

4 0.0745  6 

5 0.0568  8 

 

Problematic (2) 

𝑈𝑡𝑡 − 9𝑈𝑥𝑥 = 0. − ∞ < 𝑥 < ∞, 𝑡 > 0 

𝑈(𝑥, 0) = sin⁡𝑥 

𝑈𝑡(𝑥, 𝑜) = cos⁡3𝑥…(49) 

−∞ < 𝑥 < ∞, 

Explanation: Comparing through the standard wave equation 

𝑈𝑡𝑡 − 𝐶2𝑈𝑥𝑥 = 0 

−∞ < 𝑥 < ∞, 𝑡 > 0 

𝑈(𝑥, 0) = 𝑓(𝑥) 

−∞ < 𝑥 < ∞, 

𝑈𝑡(𝑥, 𝑜) = 𝑔(𝑥) 

−∞ < 𝑥 < ∞ 

Somewhere 

𝐶2 = 9 ⇒ 𝐶 = 3 

𝑓(𝑥) = sin⁡𝑥 

𝑔(𝑥) = cos⁡3𝑥 

Consequently, using the formula 

𝑈(𝑥, 𝑡) =
1

2
[𝑓(𝑥 + 𝑐𝑡) + 𝑓(𝑥 − 𝑐𝑡)] +

1

2𝑐
∫

𝑥−𝑐𝑡

𝑥+𝑐𝑡
 𝑔(𝑥)𝑑𝑠….(50) 

We need 

𝑈(𝑥, 𝑡) =
1

2
[sin⁡(𝑥 + 3𝑡) + sin⁡(𝑥 − 3𝑡)] +

1

2 × 3
∫

𝑥−𝑐𝑡

𝑥+𝑐𝑡
 cos⁡3𝑠𝑑𝑠 

Nevertheless 
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𝑈(𝑥, 𝑡) =
1

2
[sin⁡(𝑥 + 𝑐3𝑡) + sin⁡(𝑥 − 3𝑡)] =

2sin⁡𝑥cos ⁡3𝑡

2
….(51) 

So 

2sin⁡𝑥cos⁡3𝑡

2
+
1

6
∫

𝑥−𝑐𝑡

𝑥+𝑐𝑡
 cos⁡3𝑠𝑡 

= sin⁡𝑥cos⁡3𝑡 +
1

18
[sin⁡3𝑡cos⁡𝑥]…..(52) 

Later 

𝑈(𝑥, 𝑡) = sin⁡𝑥cos⁡3𝑡 +
1

9
sin⁡3𝑡cos⁡𝑥…..(53) 

 

Table 3: viewing the standards of 𝒖(𝒙, 𝒕) at changing 𝒙 and 𝒕 

S/N 𝑢(𝑥, 𝑡) 𝑥 𝑡 

1 0.6772 50 0 

2 0.1830 100 2 

3 0.2744 150 4 

4 0.3476 200 6 

5 0.4260 250 8 

6 0.4711 300 10 

7 0.6165 350 12 

8 0.5336 400 14 

9 0.5305 450 16 

10 0.5081 500 18 

 

Table 4: Viewing consequence of 𝒖(𝒙, 𝒕) at fixed 𝒕 and changing 𝒙 

S/N 𝑢(𝑥, 𝑡) Varying 𝑥 Fixed 𝑡 

1 0.0862 5 0 

2 0.1636 10  

3 0.2578 15  
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4 0.3430 20  

5 0.4226 25  

6 0.5120 30  

7 0.5726 35  

8. Conclusion 

There are numerous physical applications for the wave equation, ranging from sound waves 

in air to magnetic waves in the Sun's atmosphere. On the other hand, waves on a stretched 

elastic thread are the easiest systems to picture and explain. For two reasons, we can justify 

taking x on the entire real line. From a physical standpoint, the border won't affect you much 

if you are seated far away from it; however, the solutions found in this chapter are still 

applicable up until that point. The lack of a boundary is a significant simplification 

mathematically. The one-dimensional wave equation, or governing partial differential 

equation, depicts the transverse vibration of an elastic string (King and Billingham, 2000). 

The change of variable method has been used to obtain the analytical answer. One of the 

most important mathematical puzzles of the middle of the eighteenth century was the solution 

to the wave equation. Though the classical theory of partial differential equations deals 

almost completely with the well-posed, ill posed problems can be mathematically and 

scientifically interesting. 
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