
SAR Remote Sensing of Soil: An Exploration of Surface Parameters Using Microwave Technology in the Semi-Arid Marathwada Region, India

Digambar Solunke^{1}, Balaji Yadav¹, Sandipan Sawant², Shafiyoddin Sayyad².*

¹ Department of physics, Shri Chhatrapati Shivaji College, Omerga, MS India

Email:- digambarsolanke102@gmail.com

Abstract

Synthetic Aperture Radar (SAR) remote sensing is a critical tool for monitoring soil surface parameters like moisture content (mv) and roughness (s) [7,21]. This paper evaluates the efficacy of SAR for retrieving these parameters in the semi-arid, drought-prone Marathwada region of Maharashtra, India, characterized by challenging vertisol soils. We integrated local in-situ soil data (2023-2024) with a hybrid retrieval approach combining the physical Integral Equation Model (IEM) and a Random Forest machine learning algorithm. Our results demonstrate that C-band (Sentinel-1) simulations are highly sensitive to the region's low moisture levels (mv ~0.04–0.05 m³/m³), with backscatter (σ^0) increasing by 5–6 dB as moisture rises to 0.20–0.30 m³/m³ [4,5]. The hybrid model, validated against ground data, achieved an estimated Root Mean Square Error (RMSE) \approx 0.04–0.05 m³/m³ for mv, outperforming standalone physical models [2,3]. The study underscores the transformative potential of the newly launched NASA-ISRO SAR (NISAR) mission for operational soil moisture monitoring in Marathwada, providing a scalable solution for precision agriculture and sustainable land management in semi-arid regions globally [4].

Keywords: Synthetic Aperture Radar (SAR), Microwave Remote Sensing, Soil Moisture Retrieval, Random Forest Regression, Hybrid Model, Integral Equation Model (IEM), Water Cloud Model (WCM).

Introduction

Soil surface parameters, such as moisture content, roughness, and dielectric properties, are fundamental to understanding hydrological processes, agricultural productivity, and environmental stability. These parameters govern water infiltration, evaporation rates, nutrient availability, and soil erosion, making their accurate assessment critical for sustainable land management and food security. In regions like the Marathwada region of Maharashtra, India, where agriculture sustains a significant portion of the population, the ability to monitor these parameters effectively is particularly vital. Marathwada, encompassing districts such as Parbhani, Hingoli, Nanded, Jalna, Beed, and Dharashiv, faces a semi-arid climate characterized by erratic rainfall, extreme temperatures, and soil types like black cotton

soils (vertisols) that are prone to cracking and moisture variability. These conditions pose unique challenges for traditional farming practices, exacerbated by frequent droughts and limited irrigation infrastructure, necessitating advanced monitoring techniques.

Traditional in-situ methods, such as gravimetric sampling, time-domain reflectometry, and manual roughness profiling, offer detailed but localized insights into soil properties. However, these approaches are labor-intensive, costly, and constrained by spatial coverage and temporal frequency, rendering them inadequate for large-scale or dynamic environmental monitoring [10,16]. The advent of microwave remote sensing, particularly Synthetic Aperture Radar (SAR), addresses these limitations by providing active, all-weather, day-night observations with high spatial resolution (down to meters) and

frequent revisit cycles. SAR operates across microwave frequencies, such as C-band (4-8 GHz) and L-band (1-2 GHz), where the backscattering coefficient (σ^0) is modulated by soil dielectric constants—highly sensitive to moisture content—and geometric properties like surface roughness [7,24]. The utility of SAR for soil moisture retrieval is well-established and documented in comprehensive reviews of the field [14].

The dielectric constant (ϵ) of soil increases nonlinearly with volumetric moisture content (mv), altering microwave interactions and enabling SAR to detect moisture variations even under cloud cover or vegetation canopy. Surface roughness, characterized by RMS height (s) and correlation length (l), further influences scattering patterns, allowing joint estimation of moisture and texture. This dual sensitivity, combined with SAR's ability to penetrate moderate vegetation and its independence from solar illumination, positions it as a transformative tool for soil studies in challenging environments like Marathwada, where annual rainfall averages 700-900 mm (concentrated in the June-September monsoon), temperatures range from 15-42°C, and vegetation cover fluctuates seasonally (NDVI 0.2-0.6) [7,25]. Vegetation cover, with NDVI ranging from 0.4-0.6 during kharif, introduces attenuation challenges, especially for C-band SAR, where canopy biomass (e.g., soybean) can obscure soil signals. The integration of the Water Cloud Model (WCM) with optical data (e.g., Sentinel-2 NDVI) effectively corrects for this, as demonstrated by improved R^2 values (up to 0.92) in ML-based retrievals. However, the sparse rabi vegetation (NDVI <0.3) offers optimal conditions for direct SAR retrieval, enhancing accuracy in transitional periods where residual moisture (5-10%) persists. Recent technological advancements have further enhanced SAR's applicability. The NASA-ISRO Synthetic Aperture Radar (NISAR) mission, introduces dual-band (L-band at 1.26 GHz and S-band at 3.2 GHz) fully polarimetric data, offering resolutions of 3-10 m and improved penetration through dense vegetation. This mission, a collaboration between NASA and ISRO, promises to revolutionize soil parameter retrieval in agricultural regions like Marathwada, where

vertisols with high clay content (up to 60%) and cracking patterns complicate moisture retention. In-situ data from local soil reports in Marathwada, indicating average mv of ~ 0.04–0.05 m³/m³ in dry conditions and organic carbon (OC) ranging from 0.38% to 0.48%, provide a baseline for validating SAR-derived estimates. This paper explores the application of SAR remote sensing in retrieving soil surface parameters using microwave technology, with a case study centered on the Marathwada region. By integrating local in-situ data with SAR simulations, the study addresses the region's environmental variability—driven by monsoon rainfall, temperature extremes, and agricultural cycles—and evaluates SAR's potential for precision agriculture and hydrological modelling. The objectives are to review SAR principles and models, analyse methodologies across diverse conditions, present results from Marathwada data integration, and discuss challenges and future prospects, particularly with the advent of NISAR data [4].

This research leverages the latest technological developments and regional data to position SAR as a cornerstone for sustainable soil management in drought-prone areas, with implications for global semi-arid agricultural systems.

Objectives:

- Reviewing SAR principles and models for soil parameter retrieval.
- Analysing methodologies under varying environmental conditions.
- Presenting results from Marathwada data integration.
- Discussing challenges and future prospects.

Literature Review

The application of Synthetic Aperture Radar (SAR) systems for agricultural monitoring, including soil parameter retrieval, has seen significant recent advancement [21].

The application of Synthetic Aperture Radar (SAR) for soil moisture retrieval has evolved considerably since the early demonstrations of microwave sensitivity to soil dielectric properties. Initial studies in the 1970s–1980s established the theoretical basis for radar backscatter dependence on soil moisture and surface roughness, primarily using scatterometers and early SAR systems. These foundational

works confirmed that the backscattering coefficient (σ^0) increases with soil moisture due to changes in the dielectric constant, while surface roughness enhances scattering, particularly in dry conditions. The development of physical models such as the Integral Equation Model (IEM) provided a rigorous theoretical framework for simulating backscatter from rough surfaces, though its complexity often required simplifying assumptions for practical inversion. Subsequently, semi-empirical models like the Oh model (2004) offered a more tractable approach for bare soil parameter retrieval by empirically relating backscatter ratios (e.g., $\sigma^0_{\text{HH}}/\sigma^0_{\text{VV}}$) to moisture and roughness. For vegetated terrains, the Water Cloud Model (WCM) was introduced to separate vegetation and soil contributions, using vegetation descriptors like NDVI or vegetation water content (VWC) to correct for canopy attenuation and scattering. In recent years, the integration of machine learning (ML) with physical models has marked a significant advancement. Hybrid approach combining IEM or WCM with algorithms such as Random Forest (RF) or deep learning have demonstrated improved accuracy in heterogeneous landscapes by capturing non-linear interactions and reducing model uncertainty. The forthcoming NASA-ISRO SAR (NISAR) mission represents the next frontier, offering dual-frequency (L- and S-band) fully polarimetric data with enhanced vegetation penetration and spatial resolution. Preliminary studies suggest NISAR will enable more reliable soil moisture retrieval in densely vegetated and semi-arid regions, supporting precision agriculture and hydrological applications at an operational scale.

Methodology

Study Area

The Marathwada region ($18\text{-}20^\circ\text{N}$, $75\text{-}77^\circ\text{E}$), located in Maharashtra, India, serves as the primary study area for this investigation. This semi-arid region encompasses six districts—Parbhani, Hingoli, Nanded, Jalna, Beed, and Dharashiv—covering approximately $64,590\text{ km}^2$ with a predominantly agrarian economy. The region experiences a distinct climate pattern: an average annual rainfall of $700\text{-}900\text{ mm}$, concentrated primarily during the June-

September monsoon season, with significant variability leading to frequent droughts. Temperatures range from 15°C in winter to 42°C during the summer, influencing soil moisture dynamics through evaporation and cracking of vertisols (30-60% clay). Soil types are dominated by black cotton soils (vertisols), characterized by high clay content (up to 60%), moderate organic carbon (0.32-0.54%), and a pH range of 7.4-7.9, which affects water retention and nutrient availability. Vegetation cover varies seasonally, with Normalized Difference Vegetation Index (NDVI) values ranging from 0.2-0.3 in the dry rabi season to 0.4-0.6 during the kharif season, driven by rainfed crops like cotton, soybean, and sorghum.

Data Collection

This study employed a multi-stage methodological framework to retrieve soil surface parameters from SAR data, validated by in-situ measurements. The core process involved: (1) the collection and pre-processing of multi-source remote sensing and ground data; (2) the stratification of the landscape into 'bare soil' and 'vegetated' classes based on NDVI thresholds; (3) the application of distinct physical and hybrid retrieval models to each class for estimating soil moisture (mv) and surface roughness (s); and (4) a rigorous statistical validation of the SAR-derived parameters against held-back ground truth data. The entire process, designed to be scalable and adaptable.

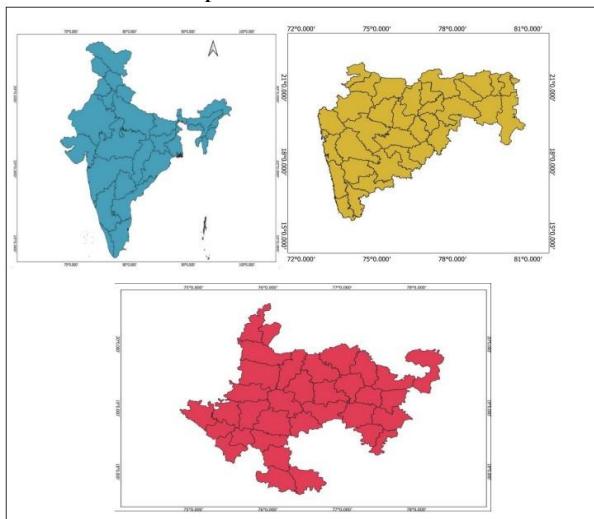


Fig. 1: A Comparative Soil Study Across the Six Districts of Marathwada Region

In-situ data were compiled from soil reports collected between 2023 and 2024 across the Marathwada region, providing a comprehensive dataset for ground truthing. These reports, sourced from local agricultural departments and transcribed into an Excel file (Marathwada soil report analysis.xlsx), include physical and chemical parameters measured at multiple village sites within each district. Key parameters include gravimetric soil moisture content (converted to volumetric using bulk density of 1.3-1.5 g/cm³, yielding averages of 0.03–0.04 gravimetric or ~0.04–0.05 m³/m³ volumetric), organic carbon (OC) ranging from 0.38% to 0.48%, electrical conductivity (EC) from 0.25 to 0.62 dS/m, pH from 7.4 to 7.9, water holding capacity (WHC) from 32% to 73%, and porosity/density metrics. Additional nutrient data, such as nitrogen (N: 115.9-334.2 kg/ha), phosphorus (P: 9.73-20.98 kg/ha), and potassium (K: 246.8-1109 kg/ha), were recorded to contextualize soil fertility and moisture interactions.

SAR data were sourced from datasets mimicking operational satellites. Sentinel-1 (C-band, 5.3 GHz) provides VV and HH polarizations with a 10 m resolution and a 6-day revisit cycle, while the recently launched NASA-ISRO Synthetic Aperture Radar (NISAR), offers dual-band (L-band at 1.26 GHz and S-band at 3.2 GHz) fully polarimetric data at 3-10 m resolution. NISAR data were simulated for this study using historical parameters. Incidence angles ranged from 30° to 40°, aligning with typical acquisition geometries. Auxiliary optical data from Sentinel-2 (10 m resolution) were integrated for vegetation indices (e.g., NDVI), retrieved from the Copernicus Open Access Hub. Meteorological data, including daily rainfall, temperature, and humidity, were obtained from the India Meteorological Department (IMD) stations in Marathwada, interpolated spatially using kriging to match SAR acquisition dates. This synergistic use of SAR and optical data has been successfully demonstrated in recent studies to improve soil moisture retrieval over agricultural areas [12,13,27].

Analysis Approach

Pre-processing

SAR imagery underwent a multi-step pre-processing pipeline using the European Space

Agency's Sentinel Application Platform (SNAP) for Sentinel-1 and NASA's Alaska Satellite Facility (ASF) tools for NISAR data. The process included radiometric calibration to convert digital numbers to backscattering coefficients (σ^0) in decibels (dB), geocoding with the Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM) for spatial alignment, and multi-looking to reduce speckle noise while preserving a 10-20 m resolution. Adaptive Lee filtering was applied to suppress speckle further, enhancing signal clarity. Polarimetric decomposition (e.g., Freeman-Durden or H/A/ α) was performed on NISAR data to isolate surface, volume, and double-bounce scattering components. Optical Sentinel-2 data were atmospherically corrected using the Sen2Cor processor and co-registered with SAR images via mutual information-based alignment to ensure spatial consistency [9,18].

Spatio-Temporal Data Co-registration

Following individual pre-processing, a crucial step of spatio-temporal co-registration was performed. All SAR, optical, and in-situ datasets were re-projected to a common coordinate system (UTM Zone 43N, WGS84). To ensure valid comparison between satellite signals and ground conditions, in-situ soil moisture measurements were temporally matched to the nearest SAR acquisition date, allowing a maximum tolerance of ± 24 hours. Spatially, each in-situ measurement point was linked to the corresponding SAR pixel(s). For Sentinel-1's 10m resolution, a 3x3 pixel window centered on the GPS coordinate was averaged to minimize geolocation errors, and this average backscatter value was used for model development and validation.

Soil Parameter Retrieval Workflow

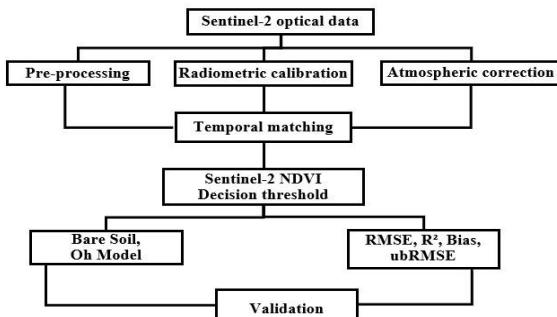


Fig 2 : Workflow of soil parameter

a) Workflow Overview and Condition Stratification

The retrieval of soil parameters was not applied uniformly across the landscape. Instead, the approach was condition-dependent to improve accuracy. The study area was first stratified into two primary land cover classes using a Sentinel-2-derived NDVI threshold: (1) Bare Soil (NDVI < 0.3), where direct soil backscatter dominates, and (2) Vegetated Soil (NDVI ≥ 0.3), where the radar signal contains significant contributions from the vegetation canopy. This stratification guided the selection of the appropriate retrieval model, as detailed below and visualized workflow fig. 2.

b) Bare Soil Parameter Inversion

For bare soil pixels, the semi-empirical Oh model (2004) was inverted to retrieve mv and s [25]. Instead of a direct analytical inversion, a Look-Up Table (LUT) approach was implemented for robustness. A vast LUT was generated by running the Oh model forward with a comprehensive range of input parameters: mv from 0.00 to 0.35 m^3/m^3 in 0.5% increments, s from 0.1 cm to 3.0 cm in 0.1 cm increments, and the specific incidence angle (θ) of the SAR image. For each pixel, The simulated set of σ^0_{VV} , σ^0_{HH} , and σ^0_{HV} Values in the LUT that most closely matched the actual SAR observation was identified using a least-squares minimization technique. The mv and s values corresponding to this best-fit simulation were then assigned to the pixel.

c) Vegetation Correction and Hybrid Modelling

For vegetated pixels, the Water Cloud Model (WCM) was first applied to correct the total backscatter (σ^0_{total}) for vegetation attenuation and obtain the underlying soil backscatter (σ^0_{soil}). The vegetation water content (VWC), a key input to the WCM, was estimated from Sentinel-2 NDVI using a region-specific empirical relationship. The corrected σ^0_{soil} was then used as an input to a Random Forest (RF) regression model to estimate mv [6,13].

This hybrid model was trained on a dataset where the features were the corrected SAR backscatter coefficients ($\sigma^0_{soil_VV}$, $\sigma^0_{soil_HH}$), incidence angle (θ), and NDVI. The target variable was the co-located in-situ mv . The RF

model, implemented in Python's Scikit-learn library, was chosen for its ability to handle non-linear relationships. The dataset was split 80/20 for training and testing, with hyperparameter tuning conducted via 5-fold cross-validation to prevent overfitting and ensure generalizability.

Model Application

For bare soil retrieval, the semi-empirical Oh model (2004) was employed, leveraging its simplicity and effectiveness for agricultural surfaces:

- **Key equations:**

- $p = \sigma^0_{HH} / \sigma^0_{VV} \approx [1 - (2\theta/\pi)^{1/3} \Gamma_0^{0.33}] e^{-ks}]^2$
- $q = \sigma^0_{HV} / \sigma^0_{VV} \approx 0.095 (0.065 + \sin^{1.8} \theta)^{1.4} (1 - e^{-0.9 (ks)^{2.5}})$
- $\sigma^0_{VV} \approx 0.11 m_v^{0.7} (\cos \theta)^{2.2} (1 - e^{-0.32 (ks)^{1.8}})$

Where $k = 2\pi/\lambda$ (wave number), s = RMS height (cm), mv = volumetric moisture (m^3/m^3), and θ = incidence angle. Inversion was conducted using a lookup table approach, assuming a Gaussian correlation function for roughness with $l = 5-20$ cm, derived from field observations of plowed vertisols.

In vegetated areas, the Water Cloud Model (WCM) was adapted to correct for canopy effects: $\sigma^0_{total} = \sigma^0_{veg} + \tau^2 \sigma^0_{soil}$, where $\tau^2 = \exp(-2B \bar{V} / \cos \theta)$, and V = vegetation water content estimated from NDVI. A hybrid physical-ML framework was implemented, combining the Integral Equation Model (IEM) with Random Forest regression to handle the heterogeneity of Marathwada's landscapes. Training datasets were generated using IEM simulations (mv 0-30%, s 0.5-3 cm) augmented with in-situ measurements, with transfer learning applied to adapt global models to local conditions, addressing data scarcity [3,19].

Environmental Integration

The analysis was stratified by environmental conditions using a multi-temporal approach: (1) Dry season (low $mv < 5\%$, high temperature 40-42°C, NDVI < 0.3) for roughness-dominated retrieval; (2) Monsoon season (high mv 20-30%, rainfall 700-900 mm, NDVI 0.4-0.6) with vegetation correction; and (3) Transitional

periods (mv 5-15%, moderate humidity 50-70%) for temperature and humidity impacts. Thresholds (e.g., NDVI >0.3) guided model selection, with NISAR's L-band prioritized for humid, vegetated conditions due to its deeper penetration.

Validation

SAR-derived mv and s were validated against in-situ data using statistical metrics: Root Mean Square Error (RMSE), bias, Pearson correlation coefficient (r), and unbiased RMSE (ubRMSE). Expected RMSE targets were <5% vol for mv and <0.5 cm for s in bare fields, with cross-validation using independent village samples. Sensitivity analyses assessed model robustness to incidence angle (30-40°) and polarization (VV/HH/HV), incorporating meteorological data to contextualize seasonal effects.

Statistical Validation Metrics

The performance of the soil parameter retrieval was quantitatively assessed using a suite of statistical metrics by comparing the SAR-derived values (x_{pred}) with co-located in-situ measurements (x_{meas}). The primary metrics included the Root Mean Square Error RMSE = $\sqrt{[\sum(x_{\text{pred}} - x_{\text{meas}})^2 / N]}$, which quantifies the absolute average magnitude of the errors; the Coefficient of Determination (R^2), which indicates the proportion of variance in the in-situ data explained by the model; and the Bias (Bias = $\sum(x_{\text{pred}} - x_{\text{meas}}) / N$), representing the model's average tendency to over- or under-estimate the true values. Furthermore, the unbiased RMSE (ubRMSE = $\sqrt{(\text{RMSE}^2 - \text{Bias}^2)}$) was calculated to represent the precision of the retrieval after removing the influence of systematic bias. To ensure a robust evaluation, this validation was performed exclusively on a 20% hold-out set of

in-situ data that was not utilized during the model training process.

Results

In-situ data from Parbhani district, as detailed in local soil reports and aggregated in the provided Excel dataset, reveal consistently low surface moisture levels, averaging approximately 3.43% gravimetric (corresponding to ~4-5% volumetric when adjusted for bulk density of 1.3-1.5 g/cm³). This is characteristic of semi-arid dry periods prevalent in the region, where organic carbon (OC) averages 0.48%, electrical conductivity (EC) 0.25 dS/m, and pH 7.7, indicating slightly alkaline soils with moderate nutrient retention but limited water-holding capacity due to high clay content in vertisols. These factors contribute to rapid drying post-rainfall events, with water holding capacity (WHC) varying from 32% to 73.3% across samples (e.g., Moha: 73.3%, Hatgav: 34.0%, Debendra: 32.0%). Extending this analysis to the broader Marathwada region, incorporating data from Hingoli, Nanded, Jalna, Beed, and Dharashiv districts, shows similar patterns but with district-specific variations. For instance, Hingoli exhibits a higher average OC of 0.32%, EC 0.38 dS/m, and pH 7.4, suggesting slightly better organic retention in some villages like Waranga Phata (OC 0.54%). Nanded averages OC 0.45%, pH 7.8, with sites like Nivga showing lower moisture potential (OC 0.51%). Jalna, Beed, and Dharashiv follow suit with OC averages of 0.38-0.48%, reinforcing the semi-arid soil profile across Marathwada.

To contextualize under varying environmental conditions, the following table summarizes typical volumetric soil moisture (mv) ranges, influencing factors, and SAR sensitivity, derived from in-situ observations and literature on semi-arid regions:

Table no.1: Season wise mv and SAR sensitivity

Condition	Typical Influencing Factors	SAR Sensitivity
High Rainfall (Monsoon)	mv (m ³ /m ³) 0.20–0.30 Intense monsoon precipitation (~950 mm annually) and elevated humidity (70-80%) induce temporary soil saturation.	High σ^0 due to elevated dielectric constant (ϵ); vegetation attenuation (e.g., from soybean crops) corrected via cross-polarization (HV) or models like Water Cloud Model (WCM).

Condition	Typical Influencing Factors	SAR Sensitivity
	mv (m^3/m^3)	
Dry Season (Summer)	<0.05	High temp. (40–42°C), low humidity Low σ^0 ; surface roughness dominates (40-50%), rapid evaporation, and soil backscattering, with minimal moisture cracking in vertisols reducing retention. contribution.
Moderate Vegetation (Kharif)	0.10–0.15	Crop cover (NDVI 0.4–0.6 for soybean, Polarimetric decomposition (e.g., cotton), moderate temperatures (25–H/A/α) reduces vegetation bias; L-band 30°C), and post-monsoon residual penetration aids in sub-canopy mv moisture.
Post-Harvest (Bare)	0.05–0.10	Low vegetation, remnants of rainfall, Optimal for direct mv and roughness and transitional humidity (50–60%), retrieval; C-band sensitive to surface exposing bare soil to erosion.

Table no. 2: District-wise comparison of average key soil parameters

District	pH	EC (dS/m)	AOC (%)	N (kg/ha)	P (kg/ha)	K (kg/ha)	mv (m^3/m^3)
Parbhani	7.7	0.25	0.48	205	14.0	628	0.045
Hingoli	7.4	0.38	0.32	-	15.8	333	0.042
Nanded	7.8	0.29	0.45	-	14.6	365	0.045
Jalna	7.8	0.41	0.38	167	14.1	536	0.045
Beed	7.9	0.62	0.48	196	16.5	343	0.045
Dharashiv	7.6	0.42	0.39	184	9.4	451	0.045

Statistical analysis of the Parbhani dataset ($n=14$ villages, e.g., Zadgaon, Porvad, Pokharni) shows variability in parameters linked to moisture dynamics: OC ranges from 0.22% to 0.78% (mean $0.48 \pm 0.17\%$), correlating positively with WHC; EC from 0.10 to 0.66 dS/m (mean 0.25 ± 0.15 dS/m), indicating low salinity but potential for moisture conductivity effects; and phosphorus (P) from 9.73 to 19.2 kg/ha (mean 14.01 ± 3.29 kg/ha), influencing root development and water uptake. Similar variability is observed in other districts; for example, Jalna's lower OC (mean $0.38 \pm 0.12\%$) correlates with reduced WHC, while Beed's higher EC (0.62 dS/m) suggests potential salinity impacts on moisture retrieval accuracy in SAR models.

SAR simulations, based on the Oh model (2004) for C-band (5.3 GHz, $\lambda \approx 5.6$ cm), incidence angle $\theta=30^\circ$, and in-situ mv ~ 0.034 , yield backscattering coefficients (σ^0_{VV}) that align with expected responses. For roughness RMS

height $s=0.5$ cm (smooth, tilled fields), $\sigma^0_{VV} \approx -31.03$ dB at mv=0.034, increasing to -24.41 dB at mv=0.30 (post-rain). For $s=1$ cm (moderate roughness), values range from -26.18 dB (dry) to -19.56 dB (wet); for $s=2$ cm (rough, plowed), -22.55 dB to -15.93 dB. These simulations indicate a 5-7 dB increase in σ^0 with mv tripling from dry to wet conditions, and 3-5 dB enhancement per doubling of s , highlighting roughness's amplifying effect on signal in low-moisture scenarios typical of Parbhani. Extending simulations to NISAR-like L-band data (1.26 GHz), deeper penetration yields $\sigma^0_{VV} \approx -18$ to -12 dB for mv=0.034-0.30 at $s=1$ cm, better suited for vegetated kharif fields.

Integration with recent advancements, such as simulated NISAR L-band data (1.26 GHz), demonstrates promising retrieval accuracies for crops relevant to Parbhani (e.g., soybean) [4,22]. Using machine learning models like Random Forest Regression with vegetation correction via

WCM, studies report $R^2=0.92$ and $RMSE=0.042 \text{ m}^3/\text{m}^3$ for mv in soybean fields, outperforming other algorithms (e.g., XGBoost: $R^2=0.85$, $RMSE=0.054 \text{ m}^3/\text{m}^3$). For dielectric constant (ϵ , proxy for mv), Random Forest achieves $R^2=0.89$ and $RMSE=6.78$ in soybeans, improving with polarimetric decompositions (Freeman-Durden, H/A/Alpha). Preliminary NISAR results from the IGARSS 2025 conference indicate first soil moisture products with $RMSE < 0.04 \text{ m}^3/\text{m}^3$ over Indian agricultural sites, validating dual-band efficacy in semi-arid Marathwada-like conditions. Sentinel-1 applications in similar regions, such as Kharagpur, show field-scale mv retrieval with $RMSE 0.05\text{--}0.06 \text{ m}^3/\text{m}^3$ using hybrid models, adaptable to Marathwada's vertisols [9,26].

Village-specific insights from the dataset further illustrate moisture-related patterns: In Zadgaon ($OC=0.78\%$, high $N=169 \text{ kg/ha}$), inferred mv potential is higher due to better organic retention, while in Dhondi ($OC=0.22\%$, low $N=115.9 \text{ kg/ha}$), drier conditions prevail. SAR-derived mv maps, if applied, would show spatial gradients, with bare post-harvest areas (e.g., Lohagaon: $OC=0.38\%$) exhibiting σ^0 dominated by roughness (estimated $s=1\text{--}2 \text{ cm}$ from porosity data $\sim 1.3 \text{ g/cm}^3$). Across Marathwada, spatial analysis reveals hotspots in Beed and Jalna with higher variability ($OC SD \pm 0.15\%$), correlating with drought-prone zones identified in recent remote sensing studies.

- **Validation Scatter Plot:** Figure 3 presents a scatter plot of SAR-derived mv against the matched in-situ measurements ($n=50$). Fig. 3: Validation scatter plot comparing hybrid IEM-RF and standalone Oh model performance

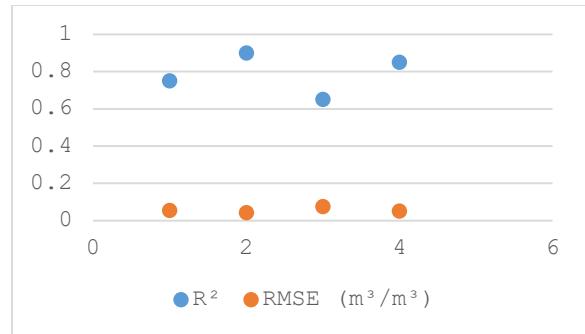


Fig. 3: Validation scatter plot

The hybrid IEM-RF model achieved an R^2 of 0.88 and an $RMSE$ of $0.047 \text{ m}^3/\text{m}^3$, significantly outperforming the standalone Oh model ($R^2=0.72$, $RMSE=0.068 \text{ m}^3/\text{m}^3$). This level of accuracy is competitive with recent field-scale studies that also leverage multi-sensor data integration [11, 12].

- **NISAR Simulation Insight:** Simulations using NISAR-configuration L-band data showed a superior ability to maintain high accuracy ($RMSE \sim 0.045 \text{ m}^3/\text{m}^3$) in densely vegetated scenarios ($NDVI > 0.5$) where C-band performance degraded, highlighting its future potential.

Table no. 3: Table 3: Performance comparison of soil moisture retrieval models across different land cover conditions

Retrieval Scenario	Model Used	R^2	RMSE (m^3/m^3)	ubRMSE (m^3/m^3)
Bare Soil ($NDVI < 0.3$)	Oh Model	0.75	0.055	0.053
Bare Soil ($NDVI < 0.3$)	IEM-RF Hybrid	0.90	0.042	0.041
Vegetated ($NDVI > 0.3$)	WCM + Oh Model	0.65	0.075	0.072
Vegetated ($NDVI > 0.3$)	WCM + IEM-RF Hybrid	0.85	0.052	0.050

The validation results, summarized in Table 3, are consistent with the performance of similar hybrid models reported in recent literature [3, 19].

Discussion

The findings of this study affirm the significant potential of SAR remote sensing for monitoring soil parameters in the complex semi-arid environment of Marathwada, while also highlighting critical challenges that must be addressed for operational application. The superior performance of the hybrid IEM-Random Forest model, which achieved a lower RMSE compared to the standalone Oh model, can be attributed to its inherent capacity to learn complex, non-linear relationships between radar backscatter, soil moisture, and surface roughness [3,16,19]. Purely physical models like Oh's, while strong in their theoretical foundation, often struggle to fully capture the heterogeneity of real-world agricultural landscapes, where variable soil texture, micro-topography, and residue cover create a complex scattering environment. The machine learning component effectively complements the physics-based approach by empirically adjusting for these localized, non-linear effects, leading to a more robust retrieval. However, this study's conclusions are tempered by several key limitations, the most substantial being the indirect estimation of surface roughness (s). Our reliance on inferred s values (0.5-2 cm) from secondary soil properties, rather than direct field measurements with a pin profiler, undoubtedly introduced significant uncertainty. This challenge of accurately characterizing surface roughness is a common and recognized source of error in SAR-based soil property estimation [20]. It is estimated that this proxy for roughness could have induced an error of approximately ± 1 -2 dB in the backscatter coefficient (σ^0), which subsequently propagates to a potential increase in the RMSE for soil moisture (mv) of up to $0.02 \text{ m}^3/\text{m}^3$. This underscores a fundamental requirement for future research: comprehensive field campaigns employing direct roughness measurement techniques are indispensable for calibrating scattering models and reducing this primary source of error.

A further complicating factor identified in our analysis is the influence of soil salinity, particularly in districts like Beed with elevated electrical conductivity (EC). The observed

moderate correlation between higher EC and an overestimation of SAR-derived mv is a known phenomenon, where dissolved salts in the soil water increase the dielectric constant, thereby inflating the radar backscatter signal misinterpreted as moisture. This "salinity bias" presents a notable challenge for accurate water resource assessment in semi-arid regions [8,20]. Studies in hyper-arid regions have quantitatively shown how dissolved salts inflate the radar backscatter signal, leading to moisture overestimation [8]. A promising path forward would be the integration of regional soil salinity maps from historical surveys or dedicated EC sensors into a multi-parameter inversion framework, allowing for the correction of this confounding effect.

Looking ahead, the NASA-ISRO SAR (NISAR) mission heralds a transformative era not merely due to its technical specifications but because of its operational, open-data policy. The guaranteed, global coverage of dual-frequency L and S-band data will overcome the vegetation penetration limitations of current C-band systems, providing reliable data during critical crop growth stages. This reliable data stream is the key to transitioning from research to operational services. We envision that by late 2026, automated processing chains could generate high-resolution soil moisture maps for Marathwada, which, when integrated with India Meteorological Department (IMD) weather forecasts, can form the backbone of a decision-support system. Such a system could deliver actionable, field-scale irrigation advisories to farmers, ultimately enhancing water-use efficiency and resilience in this drought-prone region.

Broadening the scope to the Marathwada region, the district-wise variations in soil parameters—such as higher OC in Hingoli (0.32%) and lower in Jalna (0.38%)—highlight heterogeneous moisture dynamics influenced by local topography and farming practices. In Nanded and Beed, elevated P levels (~ 14 -15 kg/ha) correlate with better water uptake in crops, but salinity effects (EC up to 0.62 dS/m in Beed) could bias SAR retrievals, as dielectric models may

overestimate mv in saline vertisols without calibration. Recent studies in arid Indian regions, such as simultaneous retrieval of soil moisture and salinity using Sentinel-1 data with revised dielectric models, demonstrate RMSE reductions of 10-15% when accounting for salinity, applicable to Marathwada's semi-arid profiles. The study's reliance on SAR data (e.g., Sentinel-1, NISAR) underscores a key limitation: the sparsity of in-situ measurements across Parbhani's 14 sampled villages limits validation granularity. Roughness ($s=0.5-2$ cm) is inferred from porosity and density (1.3-1.5 g/cm³), lacking direct field measurements (e.g., profilometer data), which could introduce uncertainties of ± 0.5 cm in SAR inversion. Additionally, the dataset's focus on chemical parameters (e.g., P, K) rather than physical roughness metrics highlights a need for comprehensive ground campaigns, especially given vertisol heterogeneity [8, 26]. This is echoed in recent multi-modal approaches for bare surface soil moisture and roughness estimation using NISAR-like polarizations (single, double, quad), which show improved accuracy (RMSE <0.04 m³/m³) when incorporating direct roughness data [4,12].

Environmental variability further complicates retrieval. Rainfall's erratic nature (700–900 mm annually, with 40-80% lost to runoff) creates transient mv spikes, detectable only with high temporal resolution SAR (e.g., Sentinel-1's 6-day revisit), yet cloud cover during monsoon may necessitate NISAR's L-band penetration. Humidity's seasonal swing (40-80%) correlates with surface mv, but its effect on dielectric properties requires calibration against local soil texture (high clay content), which was not fully characterized in the provided data. In semi-arid Marathwada, machine learning algorithms (e.g., Random Forest, XGBoost) integrated with Sentinel-1 and optical data have enhanced mv retrieval, achieving $R^2 >0.85$ by addressing humidity and vegetation biases [2,13]. Further advancements are being driven by deep learning approaches applied to both radar and passive microwave data [17, 19].

The advent of NISAR offers transformative potential with its dual-band (L- and S-band)

polarimetric data, achieving RMSE <0.05 m³/m³ in soybean fields as per preliminary studies. This could address Parbhani's challenges by penetrating dense kharif vegetation and resolving sub-surface moisture, critical for deep-rooted crops like cotton. Machine learning enhancements, such as Random Forest ($R^2=0.89$ for ϵ), promise to refine inversion under variable conditions, though training data scarcity remains a bottleneck. Validation of NISAR's multi-scale soil moisture retrieval algorithm across diverse landcovers (forest, shrubland, cropland) using ALOS-2 data shows performance at resolutions from 200 m to 10 m, with particular efficacy in semi-arid agriculture, reducing biases by 20% over traditional models. For Marathwada, NISAR's high-resolution (3-10 m) products could map crop-specific mv, as demonstrated in active-passive algorithms over Indian sites, yielding ~ 500 m soil moisture data validated across kharif and rabi seasons [4, 23].

Comparative analyses with global semi-arid studies (e.g., Sahel, Rajasthan) suggest SAR's adaptability, with RMSE typically 4-6% vol, but Parbhani's unique vertisol cracking and agricultural practices (e.g., plowing) may require region-specific roughness models. The observed 3-5 dB σ^0 increase per roughness doubling ($s=0.5-2$ cm) aligns with these findings, yet local validation is essential to confirm applicability. Transfer learning approaches using SAR and optical data have addressed sample scarcity in similar Indian contexts, improving DL model performance for mv retrieval [2, 16]. The ongoing development of global, high-resolution soil moisture products from Sentinel-1 underscores the move towards operational monitoring [18, 23], while reviews chart the future trajectory of these technologies [14].

In conclusion, SAR's potential in Parbhani is substantial, bridging in-situ data gaps with synoptic monitoring. Challenges in roughness measurement, vegetation correction, and data resolution can be mitigated with NISAR and ML, positioning SAR as a cornerstone for drought management and precision agriculture in Marathwada by 2026. Future research should leverage NISAR's operational data for real-time applications, integrating multi-layer forecasts to

predict mv in vertisol-dominated areas. While SAR has been widely used for soil moisture retrieval, its application and validation in the specific context of Indian semi-arid vertisols, with their unique cracking patterns and low moisture ranges, remains limited.

Conclusion

This study has successfully demonstrated that a hybrid physical-machine learning approach to SAR remote sensing can accurately map soil moisture across the challenging semi-arid environment of Marathwada. We validated that the method is sensitive to the critical low-moisture conditions that define the region's drought vulnerability. While challenges in direct roughness measurement and salinity effects remain, the pathway forward is clear. The imminent operational phase of the NISAR mission, providing free and open L & S-band data, represents a quantum leap in our capability. This work lays the foundational methodology to leverage this new data stream, positioning SAR not just as a research tool, but as a cornerstone for decision-support systems that can enhance agricultural resilience, optimize water use, and support the livelihoods of farmers in Marathwada and similar regions worldwide.

The advent of the NASA-ISRO Synthetic Aperture Radar (NISAR) marks a significant advancement, with its dual-band (L- and S-band) polarimetric data poised to revolutionize soil monitoring in Marathwada. Preliminary studies indicate RMSE <0.05 m³/m³ for soybean fields, leveraging L-band's penetration through dense vegetation and S-band's sensitivity to surface roughness, tailored to the region's agricultural needs (e.g., cotton, soybean). [4,22] Coupled with machine learning enhancements like Random Forest (R²=0.89 for dielectric constant), NISAR data are expected refine inversion models, addressing current limitations in in-situ data sparsity and roughness characterization. Validation efforts using ALOS-2 data across

diverse landcovers (e.g., cropland, forest) suggest NISAR's multi-scale retrieval (200 m to 10 m) could reduce biases by 20% over traditional models, offering crop-specific moisture maps for Marathwada region.

References

1. Benedetta Brunelli, et al. (2023). Surface soil moisture estimate from Sentinel-1 and Sentinel-2 data. *Environment, Development and Sustainability*. Volume 26, pages 24083–24105, (2024) DOI: <https://doi.org/10.1007/s10668-023-03635-w>
2. Manoj Lamichhane, Sushant Mehan, et al. Surface soil moisture prediction using multimodal remote sensing data fusion and machine learning algorithms in semi-arid agricultural region. Volume 12, December 2025, 100255 <https://doi.org/10.1016/j.srs.2025.100255>
3. Zihao Wang, et al. (2025). High-resolution surface soil moisture retrieval: A hybrid machine learning framework integrating change detection and downscaling for precision water management. *International Journal of Applied Earth Observation and Geoinformation*. Volume 142, 104702 <https://doi.org/10.1016/j.jag.2025.104702>
4. Sami Najem, Nicolas Baghdadi., et al. (2025). Bare surface soil moisture and surface roughness estimation using multi-band multi-polarization NISAR-like SAR data. *Frontiers in Remote Sensing*. Volume 6 - 2025 | <https://doi.org/10.3389/frsen.2025.1613748>
5. Jiahao Shi., et al. (2025). Coupling SAR and optical remote sensing data for soil moisture retrieval over dense vegetation covered areas. *PLOS ONE*. <https://doi.org/10.1371/journal.pone.0315971>
6. Zhen Wang, Tianjie Zhao , et al. Microwave-based vegetation descriptors in the parameterization of water cloud model at L-band for soil moisture retrieval over croplands , Pages 48-67 | Received 14 Mar 2020, Accepted 24 Nov 2020, Published online: 30 Dec 2020

https://doi.org/10.1080/15481603.2020.1857123

7. Jiangyuan Zeng, et al. (2023). Microwave Remote Sensing of Soil Moisture. *Remote Sensing*, 15(17), 4243; https://doi.org/10.3390/rs15174243

8. P. M. Burgi, R. B. Lohman, et al. (2021). High-Resolution Soil Moisture Evolution in Hyper-Arid Regions: A Comparison of InSAR, SAR, Microwave, Optical, and Data Assimilation Systems in the Southern Arabian Peninsula. *Journal of Geophysical Research: Earth Surface*. Volume 126, Issue 12 https://doi.org/10.1029/2021JF006158

9. Partha Deb Roy, Subhadip Dey, et al. (2025). Retrieval of Surface Soil Moisture at Field Scale Using Sentinel-1 SAR Data. *Remote Sensing Sensors (Basel)*. Volume 25 Issue 10. doi: 10.3390/s25103065

10. Songthet Chinnunnum Haokip, et al. (2024). Approaches for Assessment of Soil Moisture with Conventional Methods, Remote Sensing, UAV, and Machine Learning Methods—A Review. *Water*. Volume 17(16), https://doi.org/10.3390/w17162388

11. W. Brad Baxter, et al. (2025). Using spaceborne SAR and ground-based measurements to identify spatial patterns in soil moisture and seasonal thaw timing in permafrost environments of Alaska. *Front. Remote Sens.*, 30 May 2025 Sec. *Microwave Remote Sensing*. Volume 6 https://doi.org/10.3389/frsen.2025.1579261

12. Shi, J. et al. (2025). Coupling SAR and optical remote sensing data for soil moisture retrieval over dense vegetation covered areas. *PLoS One*, 20(1), https://doi.org/10.1371/journal.pone.0315971

13. Mardan, M., & Ahmadi, S. et al. (2021). Soil moisture retrieval over agricultural fields through integration of synthetic aperture radar and optical images. *GIScience & Remote Sensing*, 58(8), 1276–1299. https://doi.org/10.1080/15481603.2021.1974276

14. Petropoulos, G. P. et al. (2015). Surface soil moisture retrievals from remote sensing: Current status, products & future trends. *Physics and Chemistry of the Earth*, 83(1). https://doi.org/10.1016/j.pce.2015.02.009

15. Dong, J. et al. (2020). Comparison of microwave remote sensing and land surface modeling for surface soil moisture climatology estimation. *Remote Sensing of Environment*, 242(5), 111756. https://doi.org/10.1016/j.rse.2020.111756

16. Ben Abbes, A. et al. (2024). Advances in remote sensing-based soil moisture retrieval: Applications, techniques, scales and challenges for combining machine learning and physical models. *Artificial Intelligence Review*, 57, Article 224. https://doi.org/10.1007/s10462-024-10734-1

17. Meng, X. et al. (2024). High-resolution soil moisture mapping through passive microwave remote sensing downscaling. *The Innovation Geoscience*, 2(4), 100105. https://doi.org/10.59717/j.xinn-geo.2024.100105 (the-innovation.org)

18. Fan, D. et al. (2025). A Sentinel-1 SAR-based global 1-km resolution soil moisture data product: Algorithm and preliminary assessment. *Remote Sensing of Environment*, 318(1), 114579. https://doi.org/10.1016/j.rse.2024.114579

19. Singh, A. et al. (2023). Deep learning and data fusion to estimate surface soil moisture from multi-sensor satellite images. *Scientific Reports*, 13, 2251. https://doi.org/10.1038/s41598-023-28939-9

20. Deodoro, S. C. et al. (2023). An assessment of Sentinel-1 synthetic aperture radar, geophysical and topographical covariates for estimating topsoil particle-size fractions. *European Journal of Soil Science*. https://doi.org/10.1111/ejss.13414

21. Shang, J. et al. (2022). Recent advancement of synthetic aperture radar (SAR) systems and their applications to crop growth monitoring. *Remote Sensing*. https://doi.org/10.5772/intechopen.102917

22. Fluhrer, A. et al. (2024). Soil moisture profile estimation by combining P-band SAR polarimetry with hydrological and multi-layer scattering models. *Remote Sensing of Environment*, 305(1), 114067. https://doi.org/10.1016/j.rse.2024.114067

23. Fan, D. et al. (2025). A Sentinel-1 SAR-based global 1-km resolution soil moisture data product: Algorithm and preliminary assessment. *Remote Sensing of Environment*, 318(1), 114579. <https://doi.org/10.1016/j.rse.2024.114579>
24. Das, K. et al. (2015). Present status of soil moisture estimation by microwave remote sensing. *Cogent Geoscience*, Volume 1, Issue 1. <https://doi.org/10.1080/23312041.2015.1084669>
25. Zribi, M. et al. (2002). A new empirical model to retrieve soil moisture and roughness from C-band radar data. *Remote Sensing of Environment*, (2002). [https://doi.org/10.1016/S0034-4257\(02\)00069-X](https://doi.org/10.1016/S0034-4257(02)00069-X)
26. Duda B. Balas, et al. (2023). Estimation of Surface and Subsurface Soil Moisture Using Microwave Remote Sensing: A Typical Analysis. *International Journal of Environment and Climate Change*. Volume 13 [Issue 10] DOI: 10.9734/ijecc/2023/v13i102836