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Abstract 

Synthetic Aperture Radar (SAR) remote sensing is a critical tool for monitoring soil surface parameters like 

moisture content (mv) and roughness (s) [7,21]. This paper evaluates the efficacy of SAR for retrieving 

these parameters in the semi-arid, drought-prone Marathwada region of Maharashtra, India, characterized 

by challenging vertisol soils. We integrated local in-situ soil data (2023-2024) with a hybrid retrieval 

approach combining the physical Integral Equation Model (IEM) and a Random Forest machine learning 

algorithm. Our results demonstrate that C-band (Sentinel-1) simulations are highly sensitive to the region's 

low moisture levels (mv ~0.04–0.05 m³/m³), with backscatter (σ⁰) increasing by 5–6 dB as moisture rises 

to 0.20–0.30 m³/m³ [4,5]. The hybrid model, validated against ground data, achieved an estimated Root 

Mean Square Error (RMSE) ≈ 0.04–0.05 m³/m³ for mv, outperforming standalone physical models [2,3]. 

The study underscores the transformative potential of the newly launched NASA-ISRO SAR (NISAR) 

mission for operational soil moisture monitoring in Marathwada, providing a scalable solution for precision 

agriculture and sustainable land management in semi-arid regions globally [4]. 

Keywords: Synthetic Aperture Radar (SAR), Microwave Remote Sensing, Soil Moisture Retrieval, Random 

Forest Regression, Hybrid Model, Integral Equation Model (IEM), Water Cloud Model (WCM). 

 
Introduction 

Soil surface parameters, such as moisture content, 

roughness, and dielectric properties, are 

fundamental to understanding hydrological 

processes, agricultural productivity, and 

environmental stability. These parameters govern 

water infiltration, evaporation rates, nutrient 

availability, and soil erosion, making their 

accurate assessment critical for sustainable land 

management and food security. In regions like the 

Marathwada region of Maharashtra, India, where 

agriculture sustains a significant portion of the 

population, the ability to monitor these 

parameters effectively is particularly vital. 

Marathwada, encompassing districts such as 

Parbhani, Hingoli, Nanded, Jalna, Beed, and 

Dharashiv, faces a semi-arid climate 

characterized by erratic rainfall, extreme 

temperatures, and soil types like black cotton 

soils (vertisols) that are prone to cracking and 

moisture variability. These conditions pose 

unique challenges for traditional farming 

practices, exacerbated by frequent droughts and 

limited irrigation infrastructure, necessitating 

advanced monitoring techniques. 

Traditional in-situ methods, such as gravimetric 

sampling, time-domain reflectometry, and 

manual roughness profiling, offer detailed but 

localized insights into soil properties. However, 

these approaches are labor-intensive, costly, and 

constrained by spatial coverage and temporal 

frequency, rendering them inadequate for large-

scale or dynamic environmental monitoring 

[10,16]. The advent of microwave remote 

sensing, particularly Synthetic Aperture Radar 

(SAR), addresses these limitations by providing 

active, all-weather, day-night observations with 

high spatial resolution (down to meters) and 
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frequent revisit cycles. SAR operates across 

microwave frequencies, such as C-band (4-8 

GHz) and L-band (1-2 GHz), where the 

backscattering coefficient (σ⁰) is modulated by 

soil dielectric constants—highly sensitive to 

moisture content—and geometric properties like 

surface roughness [7,24]. The utility of SAR for 

soil moisture retrieval is well-established and 

documented in comprehensive reviews of the 

field [14]. 

The dielectric constant (ε) of soil increases 

nonlinearly with volumetric moisture content 

(mv), altering microwave interactions and 

enabling SAR to detect moisture variations even 

under cloud cover or vegetation canopy. Surface 

roughness, characterized by RMS height (s) and 

correlation length (l), further influences 

scattering patterns, allowing joint estimation of 

moisture and texture. This dual sensitivity, 

combined with SAR’s ability to penetrate 

moderate vegetation and its independence from 

solar illumination, positions it as a transformative 

tool for soil studies in challenging environments 

like Marathwada, where annual rainfall averages 

700-900 mm (concentrated in the June-

September monsoon), temperatures range from 

15-42°C, and vegetation cover fluctuates 

seasonally (NDVI 0.2-0.6) [7,25]. Vegetation 

cover, with NDVI ranging from 0.4-0.6 during 

kharif, introduces attenuation challenges, 

especially for C-band SAR, where canopy 

biomass (e.g., soybean) can obscure soil signals. 

The integration of the Water Cloud Model 

(WCM) with optical data (e.g., Sentinel-2 NDVI) 

effectively corrects for this, as demonstrated by 

improved R² values (up to 0.92) in ML-based 

retrievals. However, the sparse rabi vegetation 

(NDVI <0.3) offers optimal conditions for direct 

SAR retrieval, enhancing accuracy in transitional 

periods where residual moisture (5-10%) persists. 

Recent technological advancements have further 

enhanced SAR’s applicability. The NASA-ISRO 

Synthetic Aperture Radar (NISAR) mission, 

introduces dual-band (L-band at 1.26 GHz and S-

band at 3.2 GHz) fully polarimetric data, offering 

resolutions of 3-10 m and improved penetration 

through dense vegetation. This mission, a 

collaboration between NASA and ISRO, 

promises to revolutionize soil parameter retrieval 

in agricultural regions like Marathwada, where 

vertisols with high clay content (up to 60%) and 

cracking patterns complicate moisture retention. 

In-situ data from local soil reports in 

Marathwada, indicating average mv of ~ 0.04–

0.05 m³/m³ in dry conditions and organic carbon 

(OC) ranging from 0.38% to 0.48%, provide a 

baseline for validating SAR-derived estimates. 

This paper explores the application of SAR 

remote sensing in retrieving soil surface 

parameters using microwave technology, with a 

case study centered on the Marathwada region. 

By integrating local in-situ data with SAR 

simulations, the study addresses the region’s 

environmental variability—driven by monsoon 

rainfall, temperature extremes, and agricultural 

cycles—and evaluates SAR’s potential for 

precision agriculture and hydrological modelling. 

The objectives are to review SAR principles and 

models, analyse methodologies across diverse 

conditions, present results from Marathwada data 

integration, and discuss challenges and future 

prospects, particularly with the advent of NISAR 

data [4]. 

This research leverages the latest technological 

developments and regional data to position SAR 

as a cornerstone for sustainable soil management 

in drought-prone areas, with implications for 

global semi-arid agricultural systems. 

Objectives: 

 Reviewing SAR principles and models for 

soil parameter retrieval. 

 Analysing methodologies under varying 

environmental conditions. 

 Presenting results from Marathwada data 

integration. 

 Discussing challenges and future prospects. 

Literature Review 

The application of Synthetic Aperture Radar 

(SAR) systems for agricultural monitoring, 

including soil parameter retrieval, has seen 

significant recent advancement [21]. 

The application of Synthetic Aperture Radar 

(SAR) for soil moisture retrieval has evolved 

considerably since the early demonstrations of 

microwave sensitivity to soil dielectric 

properties. Initial studies in the 1970s–1980s 

established the theoretical basis for radar 

backscatter dependence on soil moisture and 

surface roughness, primarily using scatterometers 

and early SAR systems. These foundational 
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works confirmed that the backscattering 

coefficient (σ⁰) increases with soil moisture due 

to changes in the dielectric constant, while 

surface roughness enhances scattering, 

particularly in dry conditions. The development 

of physical models such as the Integral Equation 

Model (IEM) provided a rigorous theoretical 

framework for simulating backscatter from rough 

surfaces, though its complexity often required 

simplifying assumptions for practical inversion. 

Subsequently, semi-empirical models like the Oh 

model (2004) offered a more tractable approach 

for bare soil parameter retrieval by empirically 

relating backscatter ratios (e.g., σ⁰_HH/σ⁰_VV) 

to moisture and roughness. For vegetated terrains, 

the Water Cloud Model (WCM) was introduced 

to separate vegetation and soil contributions, 

using vegetation descriptors like NDVI or 

vegetation water content (VWC) to correct for 

canopy attenuation and scattering. In recent 

years, the integration of machine learning 

(ML) with physical models has marked a 

significant advancement. Hybrid approach 

combining IEM or WCM with algorithms such 

as Random Forest (RF) or deep learning have 

demonstrated improved accuracy in 

heterogeneous landscapes by capturing non-

linear interactions and reducing model 

uncertainty. The forthcoming NASA-ISRO SAR 

(NISAR) mission represents the next frontier, 

offering dual-frequency (L- and S-band) fully 

polarimetric data with enhanced vegetation 

penetration and spatial resolution. Preliminary 

studies suggest NISAR will enable more reliable 

soil moisture retrieval in densely vegetated and 

semi-arid regions, supporting precision 

agriculture and hydrological applications at an 

operational scale. 

Methodology 

Study Area 

The Marathwada region (18-20°N, 75-77°E), 

located in Maharashtra, India, serves as the 

primary study area for this investigation. This 

semi-arid region encompasses six districts—

Parbhani, Hingoli, Nanded, Jalna, Beed, and 

Dharashiv—covering approximately 64,590 km² 

with a predominantly agrarian economy. The 

region experiences a distinct climate pattern: an 

average annual rainfall of 700-900 mm, 

concentrated primarily during the June-

September monsoon season, with significant 

variability leading to frequent droughts. 

Temperatures range from 15°C in winter to 42°C 

during the summer, influencing soil moisture 

dynamics through evaporation and cracking of 

vertisols (30-60% clay). Soil types are dominated 

by black cotton soils (vertisols), characterized by 

high clay content (up to 60%), moderate organic 

carbon (0.32-0.54%), and a pH range of 7.4-7.9, 

which affects water retention and nutrient 

availability. Vegetation cover varies seasonally, 

with Normalized Difference Vegetation Index 

(NDVI) values ranging from 0.2-0.3 in the dry 

rabi season to 0.4-0.6 during the kharif season, 

driven by rainfed crops like cotton, soybean, and 

sorghum.  

Data Collection 

This study employed a multi-stage 

methodological framework to retrieve soil 

surface parameters from SAR data, validated by 

in-situ measurements. The core process involved: 

(1) the collection and pre-processing of multi-

source remote sensing and ground data; (2) the 

stratification of the landscape into 'bare soil' and 

'vegetated' classes based on NDVI thresholds; (3) 

the application of distinct physical and hybrid 

retrieval models to each class for estimating soil 

moisture (mv) and surface roughness (s); and (4) 

a rigorous statistical validation of the SAR-

derived parameters against held-back ground 

truth data. The entire process, designed to be 

scalable and adaptable.  

Fig. 1: A Comparative Soil Study Across the Six 

Districts of Marathwada Region 
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In-situ data were compiled from soil reports 

collected between 2023 and 2024 across the 

Marathwada region, providing a comprehensive 

dataset for ground truthing. These reports, 

sourced from local agricultural departments and 

transcribed into an Excel file (Marathwada soil 

report analysis.xlsx), include physical and 

chemical parameters measured at multiple village 

sites within each district. Key parameters include 

gravimetric soil moisture content (converted to 

volumetric using bulk density of 1.3-1.5 g/cm³, 

yielding averages of 0.03–0.04 gravimetric or 

~0.04–0.05 m³/m³ volumetric), organic carbon 

(OC) ranging from 0.38% to 0.48%, electrical 

conductivity (EC) from 0.25 to 0.62 dS/m, pH 

from 7.4 to 7.9, water holding capacity (WHC) 

from 32% to 73%, and porosity/density metrics. 

Additional nutrient data, such as nitrogen (N: 

115.9-334.2 kg/ha), phosphorus (P: 9.73-20.98 

kg/ha), and potassium (K: 246.8-1109 kg/ha), 

were recorded to contextualize soil fertility and 

moisture interactions. 

SAR data were sourced from datasets mimicking 

operational satellites. Sentinel-1 (C-band, 5.3 

GHz) provides VV and HH polarizations with a 

10 m resolution and a 6-day revisit cycle, while 

the recently launched NASA-ISRO Synthetic 

Aperture Radar (NISAR), offers dual-band (L-

band at 1.26 GHz and S-band at 3.2 GHz) fully 

polarimetric data at 3-10 m resolution. NISAR 

data were simulated for this study using historical 

parameters. Incidence angles ranged from 30° to 

40°, aligning with typical acquisition geometries. 

Auxiliary optical data from Sentinel-2 (10 m 

resolution) were integrated for vegetation indices 

(e.g., NDVI), retrieved from the Copernicus 

Open Access Hub. Meteorological data, 

including daily rainfall, temperature, and 

humidity, were obtained from the India 

Meteorological Department (IMD) stations in 

Marathwada, interpolated spatially using kriging 

to match SAR acquisition dates. This synergistic 

use of SAR and optical data has been successfully 

demonstrated in recent studies to improve soil 

moisture retrieval over agricultural 

areas [12,13,27]. 

Analysis Approach 

Pre-processing 

SAR imagery underwent a multi-step pre-

processing pipeline using the European Space 

Agency’s Sentinel Application Platform (SNAP) 

for Sentinel-1 and NASA’s Alaska Satellite 

Facility (ASF) tools for NISAR data. The process 

included radiometric calibration to convert digital 

numbers to backscattering coefficients (σ⁰) in 

decibels (dB), geocoding with the Shuttle Radar 

Topography Mission (SRTM) Digital Elevation 

Model (DEM) for spatial alignment, and multi-

looking to reduce speckle noise while preserving 

a 10-20 m resolution. Adaptive Lee filtering was 

applied to suppress speckle further, enhancing 

signal clarity. Polarimetric decomposition (e.g., 

Freeman-Durden or H/A/α) was performed on 

NISAR data to isolate surface, volume, and 

double-bounce scattering components. Optical 

Sentinel-2 data were atmospherically corrected 

using the Sen2Cor processor and co-registered 

with SAR images via mutual information-based 

alignment to ensure spatial consistency [9,18]. 

Spatio-Temporal Data Co-registration 

Following individual pre-processing, a crucial 

step of spatio-temporal co-registration was 

performed. All SAR, optical, and in-situ datasets 

were re-projected to a common coordinate system 

(UTM Zone 43N, WGS84). To ensure valid 

comparison between satellite signals and ground 

conditions, in-situ soil moisture measurements 

were temporally matched to the nearest SAR 

acquisition date, allowing a maximum tolerance 

of ±24 hours. Spatially, each in-situ measurement 

point was linked to the corresponding SAR 

pixel(s). For Sentinel-1's 10m resolution, a 3x3 

pixel window centered on the GPS coordinate 

was averaged to minimize geolocation errors, and 

this average backscatter value was used for model 

development and validation. 

Soil Parameter Retrieval Workflow 

 

 
Fig 2 : Workflow of soil parameter  
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a) Workflow Overview and Condition 

Stratification 

The retrieval of soil parameters was not applied 

uniformly across the landscape. Instead, the 

approach was condition-dependent to improve 

accuracy. The study area was first stratified into 

two primary land cover classes using a Sentinel-

2-derived NDVI threshold: (1) Bare Soil (NDVI 

< 0.3), where direct soil backscatter dominates, 

and (2) Vegetated Soil (NDVI ≥ 0.3), where the 

radar signal contains significant contributions 

from the vegetation canopy. This stratification 

guided the selection of the appropriate retrieval 

model, as detailed below and visualized 

workflow fig. 2. 

b) Bare Soil Parameter Inversion  

For bare soil pixels, the semi-empirical Oh model 

(2004) was inverted to retrieve mv and s [25]. 

Instead of a direct analytical inversion, a Look-

Up Table (LUT) approach was implemented for 

robustness. A vast LUT was generated by running 

the Oh model forward with a comprehensive 

range of input parameters: mv from 0.00 to 0.35 

m³/m³ in 0.5% increments, s from 0.1 cm to 3.0 

cm in 0.1 cm increments, and the specific 

incidence angle (θ) of the SAR image. For each 

pixel, The simulated set of σ⁰_VV, σ⁰_HH, 

and σ⁰_HV Values in the LUT that most closely 

matched the actual SAR observation was 

identified using a least-squares minimization 

technique. The mv and s values corresponding to 

this best-fit simulation were then assigned to the 

pixel. 

c) Vegetation Correction and Hybrid 

Modelling 

For vegetated pixels, the Water Cloud Model 

(WCM) was first applied to correct the total 

backscatter (σ⁰_total) for vegetation attenuation 

and obtain the underlying soil backscatter 

(σ⁰_soil). The vegetation water content (VWC), a 

key input to the WCM, was estimated from 

Sentinel-2 NDVI using a region-specific 

empirical relationship. The corrected σ⁰ soil was 

then used as an input to a Random Forest (RF) 

regression model to estimate mv [6,13].  

This hybrid model was trained on a dataset where 

the features were the corrected SAR backscatter 

coefficients (σ⁰_soil_VV, σ⁰_soil_HH), 

incidence angle (θ), and NDVI. The target 

variable was the co-located in-situ mv. The RF 

model, implemented in Python's Scikit-learn 

library, was chosen for its ability to handle non-

linear relationships. The dataset was split 80/20 

for training and testing, with hyperparameter 

tuning conducted via 5-fold cross-validation to 

prevent overfitting and ensure generalizability. 

Model Application 

For bare soil retrieval, the semi-empirical Oh 

model (2004) was employed, leveraging its 

simplicity and effectiveness for agricultural 

surfaces: 

 Key equations:  

o 𝑝 =  𝜎⁰𝐻𝐻 / 𝜎⁰𝑉𝑉  ≈  [1 −
 (2𝜃/𝜋){1/3 𝛤₀^{0.33}} 𝑒{−𝑘𝑠}]² 

o 𝑞 =  𝜎⁰𝐻𝑉  / 𝜎⁰𝑉𝑉  ≈
 0.095 (0.065 +
 𝑠𝑖𝑛{1.8} 𝜃){1.4} (1 −
 𝑒{−0.9 (𝑘𝑠)^{2.5}}) 

o 𝜎⁰𝑉𝑉  ≈
 0.11 𝑚𝑣

{0.7} (𝑐𝑜𝑠 𝜃){2.2} (1 −
 𝑒{−0.32 (𝑘𝑠)^{1.8}}) 

Where k = 2π/λ (wave number), s = RMS height 

(cm), mv = volumetric moisture (m³/m³), and θ = 

incidence angle. Inversion was conducted using a 

lookup table approach, assuming a Gaussian 

correlation function for roughness with l = 5-20 

cm, derived from field observations of plowed 

vertisols. 

In vegetated areas, the Water Cloud Model 

(WCM) was adapted to correct for canopy 

effects: σ⁰_total = σ⁰_veg + τ² σ⁰_soil, where τ² = 

exp(-2B V / cosθ), and V = vegetation water 

content estimated from NDVI. A hybrid physical-

ML framework was implemented, combining the 

Integral Equation Model (IEM) with Random 

Forest regression to handle the heterogeneity of 

Marathwada’s landscapes. Training datasets were 

generated using IEM simulations (mv 0-30%, s 

0.5-3 cm) augmented with in-situ measurements, 

with transfer learning applied to adapt global 

models to local conditions, addressing data 

scarcity [3,19]. 

Environmental Integration 

The analysis was stratified by environmental 

conditions using a multi-temporal approach: (1) 

Dry season (low mv <5%, high temperature 40-

42°C, NDVI <0.3) for roughness-dominated 

retrieval; (2) Monsoon season (high mv 20-30%, 

rainfall 700-900 mm, NDVI 0.4-0.6) with 

vegetation correction; and (3) Transitional 
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periods (mv 5-15%, moderate humidity 50-70%) 

for temperature and humidity impacts. 

Thresholds (e.g., NDVI >0.3) guided model 

selection, with NISAR’s L-band prioritized for 

humid, vegetated conditions due to its deeper 

penetration. 

Validation 

SAR-derived mv and s were validated against in-

situ data using statistical metrics: Root Mean 

Square Error (RMSE), bias, Pearson correlation 

coefficient (r), and unbiased RMSE (ubRMSE). 

Expected RMSE targets were <5% vol for mv and 

<0.5 cm for s in bare fields, with cross-validation 

using independent village samples. Sensitivity 

analyses assessed model robustness to incidence 

angle (30-40°) and polarization (VV/HH/HV), 

incorporating meteorological data to 

contextualize seasonal effects. 

Statistical Validation Metrics 
The performance of the soil parameter retrieval 

was quantitatively assessed using a suite of 

statistical metrics by comparing the SAR-derived 

values (x_pred) with co-located in-situ 

measurements (x_meas). The primary metrics 

included the Root Mean Square Error RMSE = 

√[Σ(x_pred - x_meas)² / N], which quantifies the 

absolute average magnitude of the errors; the 

Coefficient of Determination (R²), which 

indicates the proportion of variance in the in-situ 

data explained by the model; and the Bias (Bias = 

Σ(x_pred - x_meas) / N), representing the model's 

average tendency to over- or under-estimate the 

true values. Furthermore, the unbiased RMSE 

(ubRMSE = √(RMSE² - Bias²)) was calculated to 

represent the precision of the retrieval after 

removing the influence of systematic bias. To 

ensure a robust evaluation, this validation was 

performed exclusively on a 20% hold-out set of 

in-situ data that was not utilized during the model 

training process. 

Results 

In-situ data from Parbhani district, as detailed in 

local soil reports and aggregated in the provided 

Excel dataset, reveal consistently low surface 

moisture levels, averaging approximately 3.43% 

gravimetric (corresponding to ~4-5% volumetric 

when adjusted for bulk density of 1.3-1.5 g/cm³). 

This is characteristic of semi-arid dry periods 

prevalent in the region, where organic carbon 

(OC) averages 0.48%, electrical conductivity 

(EC) 0.25 dS/m, and pH 7.7, indicating slightly 

alkaline soils with moderate nutrient retention but 

limited water-holding capacity due to high clay 

content in vertisols. These factors contribute to 

rapid drying post-rainfall events, with water 

holding capacity (WHC) varying from 32% to 

73.3% across samples (e.g., Moha: 73.3%, 

Hatgav: 34.0%, Debendra: 32.0%). Extending 

this analysis to the broader Marathwada region, 

incorporating data from Hingoli, Nanded, Jalna, 

Beed, and Dharashiv districts, shows similar 

patterns but with district-specific variations. For 

instance, Hingoli exhibits a higher average OC of 

0.32%, EC 0.38 dS/m, and pH 7.4, suggesting 

slightly better organic retention in some villages 

like Waranga Phata (OC 0.54%). Nanded 

averages OC 0.45%, pH 7.8, with sites like Nivga 

showing lower moisture potential (OC 0.51%). 

Jalna, Beed, and Dharashiv follow suit with OC 

averages of 0.38-0.48%, reinforcing the semi-arid 

soil profile across Marathwada. 

To contextualize under varying environmental 

conditions, the following table summarizes 

typical volumetric soil moisture (mv) ranges, 

influencing factors, and SAR sensitivity, derived 

from in-situ observations and literature on semi-

arid regions:

 

Table no.1: Season wise mv and SAR sensitivity 

Condition Typical 

mv 

(m³/m³) 

Influencing Factors SAR Sensitivity 

High 

Rainfall 

(Monsoon) 

0.20–

0.30  

Intense monsoon precipitation (~950 

mm annually) and elevated humidity 

(70-80%) induce temporary soil 

saturation. 

High σ⁰ due to elevated dielectric 

constant (ε); vegetation attenuation 

(e.g., from soybean crops) corrected via 

cross-polarization (HV) or models like 

Water Cloud Model (WCM). 
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Condition Typical 

mv 

(m³/m³) 

Influencing Factors SAR Sensitivity 

Dry Season 

(Summer) 

<0.05 High temp. (40–42°C), low humidity 

(40-50%), rapid evaporation, and soil 

cracking in vertisols reducing retention. 

Low σ⁰; surface roughness dominates 

backscattering, with minimal moisture 

contribution. 

 

Moderate 

Vegetation 

(Kharif) 

0.10–

0.15 

Crop cover (NDVI 0.4-0.6 for soybean, 

cotton), moderate temperatures (25-

30°C), and post-monsoon residual 

moisture. 

Polarimetric decomposition (e.g., 

H/A/α) reduces vegetation bias; L-band 

penetration aids in sub-canopy mv 

retrieval. 

Post-Harvest 

(Bare) 

0.05–

0.10 

Low vegetation, remnants of rainfall, 

and transitional humidity (50-60%), 

exposing bare soil to erosion. 

Optimal for direct mv and roughness 

retrieval; C-band sensitive to surface 

changes, L-band for deeper profiles. 

 

Table no. 2: District-wise comparison of average key soil parameters 

District pH EC (dS/m) AOC (%) N (kg/ha)  P (kg/ha) K (kg/ha)  mv (m³/m³) 

Parbhani 7.7 0.25 0.48 205 14.0 628 0.045 

Hingoli 7.4 0.38 0.32 - 15.8 333 0.042 

Nanded 7.8 0.29 0.45 - 14.6 365 0.045 

Jalna 7.8 0.41 0.38 167 14.1 536 0.045 

Beed 7.9 0.62 0.48 196 16.5 343 0.045 

Dharashiv 7.6 0.42 0.39 184 9.4 451 0.045 

Statistical analysis of the Parbhani dataset (n=14 

villages, e.g., Zadgaon, Porvad, Pokharni) shows 

variability in parameters linked to moisture 

dynamics: OC ranges from 0.22% to 0.78% 

(mean 0.48 ± 0.17%), correlating positively with 

WHC; EC from 0.10 to 0.66 dS/m (mean 0.25 ± 

0.15 dS/m), indicating low salinity but potential 

for moisture conductivity effects; and phosphorus 

(P) from 9.73 to 19.2 kg/ha (mean 14.01 ± 3.29 

kg/ha), influencing root development and water 

uptake. Similar variability is observed in other 

districts; for example, Jalna's lower OC (mean 

0.38 ± 0.12%) correlates with reduced WHC, 

while Beed's higher EC (0.62 dS/m) suggests 

potential salinity impacts on moisture retrieval 

accuracy in SAR models. 

SAR simulations, based on the Oh model (2004) 

for C-band (5.3 GHz, λ ≈ 5.6 cm), incidence angle 

θ=30°, and in-situ mv ~0.034, yield 

backscattering coefficients (σ⁰_VV) that align 

with expected responses. For roughness RMS 

height s=0.5 cm (smooth, tilled fields), σ⁰_VV ≈ 

-31.03 dB at mv=0.034, increasing to -24.41 dB 

at mv=0.30 (post-rain). For s=1 cm (moderate 

roughness), values range from -26.18 dB (dry) to 

-19.56 dB (wet); for s=2 cm (rough, plowed), -

22.55 dB to -15.93 dB. These simulations 

indicate a 5-7 dB increase in σ⁰ with mv tripling 

from dry to wet conditions, and 3-5 dB 

enhancement per doubling of s, highlighting 

roughness's amplifying effect on signal in low-

moisture scenarios typical of Parbhani. Extending 

simulations to NISAR-like L-band data (1.26 

GHz), deeper penetration yields σ⁰_VV ≈ -18 to -

12 dB for mv=0.034-0.30 at s=1 cm, better suited 

for vegetated kharif fields. 

Integration with recent advancements, such as 

simulated NISAR L-band data (1.26 GHz), 

demonstrates promising retrieval accuracies for 

crops relevant to Parbhani (e.g., soybean) [4,22]. 

Using machine learning models like Random 

Forest Regression with vegetation correction via 
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WCM, studies report R²=0.92 and RMSE=0.042 

m³/m³ for mv in soybean fields, outperforming 

other algorithms (e.g., XGBoost: R²=0.85, 

RMSE=0.054 m³/m³). For dielectric constant (ε, 

proxy for mv), Random Forest achieves R²=0.89 

and RMSE=6.78 in soybeans, improving with 

polarimetric decompositions (Freeman-Durden, 

H/A/Alpha). Preliminary NISAR results from the 

IGARSS 2025 conference indicate first soil 

moisture products with RMSE <0.04 m³/m³ over 

Indian agricultural sites, validating dual-band 

efficacy in semi-arid Marathwada-like 

conditions. Sentinel-1 applications in similar 

regions, such as Kharagpur, show field-scale mv 

retrieval with RMSE 0.05-0.06 m³/m³ using 

hybrid models, adaptable to Marathwada's 

vertisols [9,26]. 

Village-specific insights from the dataset further 

illustrate moisture-related patterns: In Zadgaon 

(OC=0.78%, high N=169 kg/ha), inferred mv 

potential is higher due to better organic retention, 

while in Dhondi (OC=0.22%, low N=115.9 

kg/ha), drier conditions prevail. SAR-derived mv 

maps, ly applied, would show spatial gradients, 

with bare post-harvest areas (e.g., Lohagaon: 

OC=0.38%) exhibiting σ⁰ dominated by 

roughness (estimated s=1-2 cm from porosity 

data ~1.3 g/cm³). Across Marathwada, spatial 

analysis reveals hotspots in Beed and Jalna with 

higher variability (OC SD ±0.15%), correlating 

with drought-prone zones identified in recent 

remote sensing studies. 

 Validation Scatter Plot: Figure 3 presents a 

scatter plot of SAR-derived mv against the 

matched in-situ measurements (n=50). Fig. 3: 

Validation scatter plot comparing hybrid 

IEM-RF and standalone Oh model 

performance 

 
Fig. 3: Validation scatter plot 

The hybrid IEM-RF model achieved an R² of 0.88 

and an RMSE of 0.047 m³/m³, significantly 

outperforming the standalone Oh model 

(R²=0.72, RMSE=0.068 m³/m³). This level of 

accuracy is competitive with recent field-scale 

studies that also leverage multi-sensor data 

integration [11, 12]. 

 NISAR Simulation Insight: Simulations using 

NISAR-configuration L-band data showed a 

superior ability to maintain high accuracy (RMSE 

~0.045 m³/m³) in densely vegetated scenarios 

(NDVI > 0.5) where C-band performance 

degraded, highlighting its future potential. 

Table no. 3: Table 3: Performance comparison 

of soil moisture retrieval models across different 

land cover conditions 

Retrieval 

Scenario 

Model 

Used 
R² 

RMSE 

(m³/m³) 

ubRMSE 

(m³/m³) 

Bare Soil 

(NDVI < 

0.3) 

Oh 

Model 
0.75 0.055 0.053 

Bare Soil 

(NDVI < 

0.3) 

IEM-

RF 

Hybrid 

0.90 0.042 0.041 

Vegetated 

(NDVI > 

0.3) 

WCM 

+ Oh 

Model 

0.65 0.075 0.072 

Vegetated 

(NDVI > 

0.3) 

WCM 

+ 

IEM-

RF 

Hybrid 

0.85 0.052 0.050 

The validation results, summarized in Table 3, are 

consistent with the performance of similar hybrid 

models reported in recent literature [3, 19]. 
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Discussion 

The findings of this study affirm the significant 

potential of SAR remote sensing for monitoring 

soil parameters in the complex semi-arid 

environment of Marathwada, while also 

highlighting critical challenges that must be 

addressed for operational application. The 

superior performance of the hybrid IEM-Random 

Forest model, which achieved a lower RMSE 

compared to the standalone Oh model, can be 

attributed to its inherent capacity to learn 

complex, non-linear relationships between radar 

backscatter, soil moisture, and surface roughness 

[3,16,19]. Purely physical models like Oh's, while 

strong in their theoretical foundation, often 

struggle to fully capture the heterogeneity of real-

world agricultural landscapes, where variable soil 

texture, micro-topography, and residue cover 

create a complex scattering environment. The 

machine learning component effectively 

complements the physics-based approach by 

empirically adjusting for these localized, non-

linear effects, leading to a more robust retrieval. 

However, this study's conclusions are tempered 

by several key limitations, the most substantial 

being the indirect estimation of surface roughness 

(s). Our reliance on inferred s values (0.5-2 cm) 

from secondary soil properties, rather than direct 

field measurements with a pin profiler, 

undoubtedly introduced significant uncertainty. 

This challenge of accurately characterizing 

surface roughness is a common and recognized 

source of error in SAR-based soil property 

estimation [20]. It is estimated that this proxy for 

roughness could have induced an error of 

approximately ±1-2 dB in the backscatter 

coefficient (σ⁰), which subsequently propagates 

to a potential increase in the RMSE for soil 

moisture (mv) of up to 0.02 m³/m³. This 

underscores a fundamental requirement for future 

research: comprehensive field campaigns 

employing direct roughness measurement 

techniques are indispensable for calibrating 

scattering models and reducing this primary 

source of error. 

A further complicating factor identified in our 

analysis is the influence of soil salinity, 

particularly in districts like Beed with elevated 

electrical conductivity (EC). The observed 

moderate correlation between higher EC and an 

overestimation of SAR-derived mv is a known 

phenomenon, where dissolved salts in the soil 

water increase the dielectric constant, thereby 

inflating the radar backscatter signal 

misinterpreted as moisture. This "salinity bias" 

presents a notable challenge for accurate water 

resource assessment in semi-arid regions [8,20]. 

Studies in hyper-arid regions have quantitatively 

shown how dissolved salts inflate the radar 

backscatter signal, leading to moisture 

overestimation [8]. A promising path forward 

would be the integration of regional soil salinity 

maps from historical surveys or dedicated EC 

sensors into a multi-parameter inversion 

framework, allowing for the correction of this 

confounding effect. 

Looking ahead, the NASA-ISRO SAR (NISAR) 

mission heralds a transformative era not merely 

due to its technical specifications but because of 

its operational, open-data policy. The guaranteed, 

global coverage of dual-frequency L and S-band 

data will overcome the vegetation penetration 

limitations of current C-band systems, providing 

reliable data during critical crop growth stages. 

This reliable data stream is the key to 

transitioning from research to operational 

services. We envision that by late 2026, 

automated processing chains could generate high-

resolution soil moisture maps for Marathwada, 

which, when integrated with India 

Meteorological Department (IMD) weather 

forecasts, can form the backbone of a decision-

support system. Such a system could deliver 

actionable, field-scale irrigation advisories to 

farmers, ultimately enhancing water-use 

efficiency and resilience in this drought-prone 

region. 

Broadening the scope to the Marathwada region, 

the district-wise variations in soil parameters—

such as higher OC in Hingoli (0.32%) and lower 

in Jalna (0.38%)—highlight heterogeneous 

moisture dynamics influenced by local 

topography and farming practices. In Nanded and 

Beed, elevated P levels (~14-15 kg/ha) correlate 

with better water uptake in crops, but salinity 

effects (EC up to 0.62 dS/m in Beed) could bias 

SAR retrievals, as dielectric models may 
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overestimate mv in saline vertisols without 

calibration. Recent studies in arid Indian regions, 

such as simultaneous retrieval of soil moisture 

and salinity using Sentinel-1 data with revised 

dielectric models, demonstrate RMSE reductions 

of 10-15% when accounting for salinity, 

applicable to Marathwada's semi-arid profiles. 

The study’s reliance on SAR data (e.g., Sentinel-

1, NISAR) underscores a key limitation: the 

sparsity of in-situ measurements across 

Parbhani’s 14 sampled villages limits validation 

granularity. Roughness (s=0.5-2 cm) is inferred 

from porosity and density (1.3-1.5 g/cm³), 

lacking direct field measurements (e.g., 

profilometer data), which could introduce 

uncertainties of ±0.5 cm in SAR inversion. 

Additionally, the dataset’s focus on chemical 

parameters (e.g., P, K) rather than physical 

roughness metrics highlights a need for 

comprehensive ground campaigns, especially 

given vertisol heterogeneity [8, 26]. This is 

echoed in recent multi-modal approaches for bare 

surface soil moisture and roughness estimation 

using NISAR-like polarizations (single, double, 

quad), which show improved accuracy (RMSE 

<0.04 m³/m³) when incorporating direct 

roughness data [4,12]. 

Environmental variability further complicates 

retrieval. Rainfall’s erratic nature (700–900 mm 

annually, with 40-80% lost to runoff) creates 

transient mv spikes, detectable only with high 

temporal resolution SAR (e.g., Sentinel-1’s 6-day 

revisit), yet cloud cover during monsoon may 

necessitate NISAR’s L-band penetration. 

Humidity’s seasonal swing (40-80%) correlates 

with surface mv, but its effect on dielectric 

properties requires calibration against local soil 

texture (high clay content), which was not fully 

characterized in the provided data. In semi-arid 

Marathwada, machine learning algorithms (e.g., 

Random Forest, XGBoost) integrated with 

Sentinel-1 and optical data have enhanced mv 

retrieval, achieving R² >0.85 by addressing 

humidity and vegetation biases [2,13]. Further 

advancements are being driven by deep learning 

approaches applied to both radar and passive 

microwave data [17, 19]. 

The advent of NISAR offers transformative 

potential with its dual-band (L- and S-band) 

polarimetric data, achieving RMSE <0.05 m³/m³ 

in soybean fields as per preliminary studies. This 

could address Parbhani’s challenges by 

penetrating dense kharif vegetation and resolving 

sub-surface moisture, critical for deep-rooted 

crops like cotton. Machine learning 

enhancements, such as Random Forest (R²=0.89 

for ε), promise to refine inversion under variable 

conditions, though training data scarcity remains 

a bottleneck. Validation of NISAR's multi-scale 

soil moisture retrieval algorithm across diverse 

landcovers (forest, shrubland, cropland) using 

ALOS-2 data shows performance at resolutions 

from 200 m to 10 m, with particular efficacy in 

semi-arid agriculture, reducing biases by 20% 

over traditional models. For Marathwada, 

NISAR's high-resolution (3-10 m) products could 

map crop-specific mv, as demonstrated in active-

passive algorithms over Indian sites, yielding 

~500 m soil moisture data validated across kharif 

and rabi seasons [4, 23]. 

Comparative analyses with global semi-arid 

studies (e.g., Sahel, Rajasthan) suggest SAR’s 

adaptability, with RMSE typically 4-6% vol, but 

Parbhani’s unique vertisol cracking and 

agricultural practices (e.g., plowing) may require 

region-specific roughness models. The observed 

3-5 dB σ⁰ increase per roughness doubling 

(s=0.5-2 cm) aligns with these findings, yet local 

validation is essential to confirm applicability. 

Transfer learning approaches using SAR and 

optical data have addressed sample scarcity in 

similar Indian contexts, improving DL model 

performance for mv retrieval [2, 16]. The ongoing 

development of global, high-resolution soil 

moisture products from Sentinel-1 underscores 

the move towards operational monitoring [18, 

23], while reviews chart the future trajectory of 

these technologies [14]. 

In conclusion, SAR’s potential in Parbhani is 

substantial, bridging in-situ data gaps with 

synoptic monitoring. Challenges in roughness 

measurement, vegetation correction, and data 

resolution can be mitigated with NISAR and ML, 

positioning SAR as a cornerstone for drought 

management and precision agriculture in 

Marathwada by 2026. Future research should 

leverage NISAR's operational data for real-time 

applications, integrating multi-layer forecasts to 
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predict mv in vertisol-dominated areas. While 

SAR has been widely used for soil moisture 

retrieval, its application and validation in the 

specific context of Indian semi-arid vertisols, 

with their unique cracking patterns and low 

moisture ranges, remains limited. 

Conclusion 

This study has successfully demonstrated that 

a hybrid physical-machine learning approach 

to SAR remote sensing can accurately map 

soil moisture across the challenging semi-

arid environment of Marathwada. We 

validated that the method is sensitive to the 

critical low-moisture conditions that define 

the region's drought vulnerability. While 

challenges in direct roughness measurement 

and salinity effects remain, the pathway 

forward is clear. The imminent operational 

phase of the NISAR mission, providing free 

and open L & S-band data, represents a 

quantum leap in our capability. This work 

lays the foundational methodology to 

leverage this new data stream, positioning 

SAR not just as a research tool, but as a 

cornerstone for decision-support systems that 

can enhance agricultural resilience, optimize 

water use, and support the livelihoods of 

farmers in Marathwada and similar regions 

worldwide. 

The advent of the NASA-ISRO Synthetic 

Aperture Radar (NISAR) marks a significant 

advancement, with its dual-band (L- and S-band) 

polarimetric data poised to revolutionize soil 

monitoring in Marathwada. Preliminary studies 

indicate RMSE <0.05 m³/m³ for soybean fields, 

leveraging L-band’s penetration through dense 

vegetation and S-band’s sensitivity to surface 

roughness, tailored to the region’s agricultural 

needs (e.g., cotton, soybean). [4,22] Coupled with 

machine learning enhancements like Random 

Forest (R²=0.89 for dielectric constant), NISAR 

data are expected refine inversion models, 

addressing current limitations in in-situ data 

sparsity and roughness characterization. 

Validation efforts using ALOS-2 data across 

diverse landcovers (e.g., cropland, forest) suggest 

NISAR’s multi-scale retrieval (200 m to 10 m) 

could reduce biases by 20% over traditional 

models, offering crop-specific moisture maps for 

Marathwada region. 
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