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Abstract

Synthetic Aperture Radar (SAR) remote sensing is a critical tool for monitoring soil surface parameters like
moisture content (mv) and roughness (s) [7,21]. This paper evaluates the efficacy of SAR for retrieving
these parameters in the semi-arid, drought-prone Marathwada region of Maharashtra, India, characterized
by challenging vertisol soils. We integrated local in-situ soil data (2023-2024) with a hybrid retrieval
approach combining the physical Integral Equation Model (IEM) and a Random Forest machine learning
algorithm. Our results demonstrate that C-band (Sentinel-1) simulations are highly sensitive to the region's
low moisture levels (mv ~0.04-0.05 m3/md), with backscatter (¢°) increasing by 5-6 dB as moisture rises
to 0.20-0.30 m3/m?3 [4,5]. The hybrid model, validated against ground data, achieved an estimated Root
Mean Square Error (RMSE) = 0.04-0.05 m3/m3 for mv, outperforming standalone physical models [2,3].
The study underscores the transformative potential of the newly launched NASA-ISRO SAR (NISAR)
mission for operational soil moisture monitoring in Marathwada, providing a scalable solution for precision
agriculture and sustainable land management in semi-arid regions globally [4].

Keywords: Synthetic Aperture Radar (SAR), Microwave Remote Sensing, Soil Moisture Retrieval, Random
Forest Regression, Hybrid Model, Integral Equation Model (IEM), Water Cloud Model (WCM).

Introduction

Soil surface parameters, such as moisture content,
roughness, and dielectric properties, are
fundamental to understanding hydrological
processes, agricultural  productivity, and
environmental stability. These parameters govern
water infiltration, evaporation rates, nutrient
availability, and soil erosion, making their
accurate assessment critical for sustainable land
management and food security. In regions like the
Marathwada region of Maharashtra, India, where
agriculture sustains a significant portion of the
population, the ability to monitor these
parameters effectively is particularly vital.
Marathwada, encompassing districts such as
Parbhani, Hingoli, Nanded, Jalna, Beed, and
Dharashiv, faces a semi-arid climate
characterized by erratic rainfall, extreme
temperatures, and soil types like black cotton

soils (vertisols) that are prone to cracking and
moisture variability. These conditions pose
unique challenges for traditional farming
practices, exacerbated by frequent droughts and
limited irrigation infrastructure, necessitating
advanced monitoring techniques.

Traditional in-situ methods, such as gravimetric
sampling, time-domain reflectometry, and
manual roughness profiling, offer detailed but
localized insights into soil properties. However,
these approaches are labor-intensive, costly, and
constrained by spatial coverage and temporal
frequency, rendering them inadequate for large-
scale or dynamic environmental monitoring
[10,16]. The advent of microwave remote
sensing, particularly Synthetic Aperture Radar
(SAR), addresses these limitations by providing
active, all-weather, day-night observations with
high spatial resolution (down to meters) and
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frequent revisit cycles. SAR operates across
microwave frequencies, such as C-band (4-8
GHz) and L-band (1-2 GHz), where the
backscattering coefficient (c°) is modulated by
soil dielectric constants—highly sensitive to
moisture content—and geometric properties like
surface roughness [7,24]. The utility of SAR for
soil moisture retrieval is well-established and
documented in comprehensive reviews of the
field [14].

The dielectric constant (¢) of soil increases
nonlinearly with volumetric moisture content
(mv), altering microwave interactions and
enabling SAR to detect moisture variations even
under cloud cover or vegetation canopy. Surface
roughness, characterized by RMS height (s) and
correlation length (l), further influences
scattering patterns, allowing joint estimation of
moisture and texture. This dual sensitivity,
combined with SAR’s ability to penetrate
moderate vegetation and its independence from
solar illumination, positions it as a transformative
tool for soil studies in challenging environments
like Marathwada, where annual rainfall averages
700-900 mm (concentrated in the June-
September monsoon), temperatures range from
15-42°C, and vegetation cover fluctuates
seasonally (NDVI 0.2-0.6) [7,25]. Vegetation
cover, with NDVI ranging from 0.4-0.6 during
kharif, introduces attenuation challenges,
especially for C-band SAR, where canopy
biomass (e.g., soybean) can obscure soil signals.
The integration of the Water Cloud Model
(WCM) with optical data (e.g., Sentinel-2 NDVI)
effectively corrects for this, as demonstrated by
improved R2 values (up to 0.92) in ML-based
retrievals. However, the sparse rabi vegetation
(NDVI <0.3) offers optimal conditions for direct
SAR retrieval, enhancing accuracy in transitional
periods where residual moisture (5-10%) persists.
Recent technological advancements have further
enhanced SAR’s applicability. The NASA-ISRO
Synthetic Aperture Radar (NISAR) mission,
introduces dual-band (L-band at 1.26 GHz and S-
band at 3.2 GHz) fully polarimetric data, offering
resolutions of 3-10 m and improved penetration
through dense vegetation. This mission, a
collaboration between NASA and ISRO,
promises to revolutionize soil parameter retrieval
in agricultural regions like Marathwada, where

vertisols with high clay content (up to 60%) and
cracking patterns complicate moisture retention.
In-situ data from local soil reports in

Marathwada, indicating average mv of ~ 0.04—

0.05 m3/m?* in dry conditions and organic carbon
(OC) ranging from 0.38% to 0.48%, provide a
baseline for validating SAR-derived estimates.
This paper explores the application of SAR
remote sensing in retrieving soil surface
parameters using microwave technology, with a
case study centered on the Marathwada region.
By integrating local in-situ data with SAR
simulations, the study addresses the region’s
environmental variability—driven by monsoon
rainfall, temperature extremes, and agricultural
cycles—and evaluates SAR’s potential for
precision agriculture and hydrological modelling.
The objectives are to review SAR principles and
models, analyse methodologies across diverse
conditions, present results from Marathwada data
integration, and discuss challenges and future
prospects, particularly with the advent of NISAR
data [4].
This research leverages the latest technological
developments and regional data to position SAR
as a cornerstone for sustainable soil management
in drought-prone areas, with implications for
global semi-arid agricultural systems.
Obijectives:
e Reviewing SAR principles and models for
soil parameter retrieval.
e Analysing methodologies under varying
environmental conditions.
e Presenting results from Marathwada data
integration.
o Discussing challenges and future prospects.
Literature Review
The application of Synthetic Aperture Radar
(SAR) systems for agricultural monitoring,
including soil parameter retrieval, has seen
significant recent advancement [21].
The application of Synthetic Aperture Radar
(SAR) for soil moisture retrieval has evolved
considerably since the early demonstrations of
microwave sensitivity to soil  dielectric
properties. Initial studies in the 1970s-1980s
established the theoretical basis for radar
backscatter dependence on soil moisture and
surface roughness, primarily using scatterometers
and early SAR systems. These foundational
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works confirmed that the backscattering
coefficient (c°) increases with soil moisture due
to changes in the dielectric constant, while
surface  roughness  enhances  scattering,
particularly in dry conditions. The development
of physical models such as the Integral Equation
Model (IEM) provided a rigorous theoretical
framework for simulating backscatter from rough
surfaces, though its complexity often required
simplifying assumptions for practical inversion.
Subsequently, semi-empirical models like the Oh
model (2004) offered a more tractable approach
for bare soil parameter retrieval by empirically
relating backscatter ratios (e.g., o° HH/c® VV)
to moisture and roughness. For vegetated terrains,
the Water Cloud Model (WCM) was introduced
to separate vegetation and soil contributions,
using vegetation descriptors like NDVI or
vegetation water content (VWC) to correct for
canopy attenuation and scattering. In recent
years, the integration of machine learning
(ML) with physical models has marked a
significant advancement. Hybrid approach
combining IEM or WCM with algorithms such
as Random Forest (RF) or deep learning have
demonstrated improved accuracy in
heterogeneous landscapes by capturing non-
linear interactions and reducing model
uncertainty. The forthcoming NASA-ISRO SAR
(NISAR) mission represents the next frontier,
offering dual-frequency (L- and S-band) fully
polarimetric data with enhanced vegetation
penetration and spatial resolution. Preliminary
studies suggest NISAR will enable more reliable
soil moisture retrieval in densely vegetated and
semi-arid  regions,  supporting  precision
agriculture and hydrological applications at an
operational scale.

Methodology

Study Area

The Marathwada region (18-20°N, 75-77°E),
located in Maharashtra, India, serves as the
primary study area for this investigation. This
semi-arid region encompasses Six districts—
Parbhani, Hingoli, Nanded, Jalna, Beed, and
Dharashiv—covering approximately 64,590 km?
with a predominantly agrarian economy. The
region experiences a distinct climate pattern: an
average annual rainfall of 700-900 mm,
concentrated primarily during the June-

September monsoon season, with significant
variability leading to frequent droughts.
Temperatures range from 15°C in winter to 42°C
during the summer, influencing soil moisture
dynamics through evaporation and cracking of
vertisols (30-60% clay). Soil types are dominated
by black cotton soils (vertisols), characterized by
high clay content (up to 60%), moderate organic
carbon (0.32-0.54%), and a pH range of 7.4-7.9,
which affects water retention and nutrient
availability. Vegetation cover varies seasonally,
with Normalized Difference Vegetation Index
(NDVI) values ranging from 0.2-0.3 in the dry
rabi season to 0.4-0.6 during the kharif season,
driven by rainfed crops like cotton, soybean, and
sorghum.

Data Collection

This  study employed a  multi-stage
methodological framework to retrieve soil
surface parameters from SAR data, validated by
in-situ measurements. The core process involved:
(1) the collection and pre-processing of multi-
source remote sensing and ground data; (2) the
stratification of the landscape into 'bare soil' and
'vegetated' classes based on NDVI thresholds; (3)
the application of distinct physical and hybrid
retrieval models to each class for estimating soil
moisture (mv) and surface roughness (s); and (4)
a rigorous statistical validation of the SAR-
derived parameters against held-back ground
truth data. The entire process, designed to be
scalable and adaptable.

A

Fig. 1: A Comparative Soil Study Across the Six
Districts of Marathwada Region
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In-situ data were compiled from soil reports
collected between 2023 and 2024 across the
Marathwada region, providing a comprehensive
dataset for ground truthing. These reports,
sourced from local agricultural departments and
transcribed into an Excel file (Marathwada soil
report analysis.xIsx), include physical and
chemical parameters measured at multiple village
sites within each district. Key parameters include
gravimetric soil moisture content (converted to
volumetric using bulk density of 1.3-1.5 g/cms,
yielding averages of 0.03-0.04 gravimetric or
~0.04-0.05 m3¥m? volumetric), organic carbon
(OC) ranging from 0.38% to 0.48%, electrical
conductivity (EC) from 0.25 to 0.62 dS/m, pH
from 7.4 to 7.9, water holding capacity (WHC)
from 32% to 73%, and porosity/density metrics.
Additional nutrient data, such as nitrogen (N:
115.9-334.2 kg/ha), phosphorus (P: 9.73-20.98
kg/ha), and potassium (K: 246.8-1109 kg/ha),
were recorded to contextualize soil fertility and
moisture interactions.

SAR data were sourced from datasets mimicking
operational satellites. Sentinel-1 (C-band, 5.3
GHz) provides VV and HH polarizations with a
10 m resolution and a 6-day revisit cycle, while
the recently launched NASA-ISRO Synthetic
Aperture Radar (NISAR), offers dual-band (L-
band at 1.26 GHz and S-band at 3.2 GHz) fully
polarimetric data at 3-10 m resolution. NISAR
data were simulated for this study using historical
parameters. Incidence angles ranged from 30° to
40°, aligning with typical acquisition geometries.
Auxiliary optical data from Sentinel-2 (10 m
resolution) were integrated for vegetation indices
(e.g., NDVI), retrieved from the Copernicus
Open Access Hub. Meteorological data,
including daily rainfall, temperature, and
humidity, were obtained from the India
Meteorological Department (IMD) stations in
Marathwada, interpolated spatially using kriging
to match SAR acquisition dates. This synergistic
use of SAR and optical data has been successfully
demonstrated in recent studies to improve soil
moisture retrieval over agricultural
areas [12,13,27].

Analysis Approach

Pre-processing

SAR imagery underwent a multi-step pre-
processing pipeline using the European Space

Agency’s Sentinel Application Platform (SNAP)
for Sentinel-1 and NASA’s Alaska Satellite
Facility (ASF) tools for NISAR data. The process
included radiometric calibration to convert digital
numbers to backscattering coefficients (c°) in
decibels (dB), geocoding with the Shuttle Radar
Topography Mission (SRTM) Digital Elevation
Model (DEM) for spatial alignment, and multi-
looking to reduce speckle noise while preserving
a 10-20 m resolution. Adaptive Lee filtering was
applied to suppress speckle further, enhancing
signal clarity. Polarimetric decomposition (e.g.,
Freeman-Durden or H/A/a) was performed on
NISAR data to isolate surface, volume, and
double-bounce scattering components. Optical
Sentinel-2 data were atmospherically corrected
using the Sen2Cor processor and co-registered
with SAR images via mutual information-based
alignment to ensure spatial consistency [9,18].
Spatio-Temporal Data Co-registration
Following individual pre-processing, a crucial
step of spatio-temporal co-registration was
performed. All SAR, optical, and in-situ datasets
were re-projected to a common coordinate system
(UTM Zone 43N, WGS84). To ensure valid
comparison between satellite signals and ground
conditions, in-situ soil moisture measurements
were temporally matched to the nearest SAR
acquisition date, allowing a maximum tolerance
of +24 hours. Spatially, each in-situ measurement
point was linked to the corresponding SAR
pixel(s). For Sentinel-1's 10m resolution, a 3x3
pixel window centered on the GPS coordinate
was averaged to minimize geolocation errors, and
this average backscatter value was used for model
development and validation.

Soil Parameter Retrieval Workflow

Sentinel-2 optical data

1 |
I Pre-processing I IRadiometric calibrationl IAtmospheric correction I
|— Temporal hi

Sentinel-2 NDVI
Decision threshold
|
Bare Soil, RMSE, R?, Bias,
Oh Model ubRMSE

Fig 2 : Workflow of soil parameter
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a) Workflow Overview and Condition
Stratification

The retrieval of soil parameters was not applied
uniformly across the landscape. Instead, the
approach was condition-dependent to improve
accuracy. The study area was first stratified into
two primary land cover classes using a Sentinel-
2-derived NDVI threshold: (1) Bare Soil (NDVI
< 0.3), where direct soil backscatter dominates,
and (2) Vegetated Soil (NDVI > 0.3), where the
radar signal contains significant contributions
from the vegetation canopy. This stratification
guided the selection of the appropriate retrieval
model, as detailed below and visualized
workflow fig. 2.

b) Bare Soil Parameter Inversion

For bare soil pixels, the semi-empirical Oh model
(2004) was inverted to retrieve mvands [25].
Instead of a direct analytical inversion, a Look-
Up Table (LUT) approach was implemented for
robustness. A vast LUT was generated by running
the Oh model forward with a comprehensive

range of input parameters: mv from 0.00 to 0.35

m?/m? in 0.5% increments, s from 0.1 cm to 3.0
cm in 0.1 cm increments, and the specific
incidence angle (8) of the SAR image. For each
pixel, The simulated set ofc® VV, ¢ HH,
and o® HV Values in the LUT that most closely
matched the actual SAR observation was
identified using a least-squares minimization
technique. The mv and s values corresponding to
this best-fit simulation were then assigned to the
pixel.

c) Vegetation Correction and Hybrid
Modelling

For vegetated pixels, the Water Cloud Model
(WCM) was first applied to correct the total
backscatter (c° total) for vegetation attenuation
and obtain the underlying soil backscatter
(c°_soil). The vegetation water content (VWC), a
key input to the WCM, was estimated from
Sentinel-2 NDVI using a region-specific
empirical relationship. The corrected ¢° soil was
then used as an input to a Random Forest (RF)
regression model to estimate mv [6,13].

This hybrid model was trained on a dataset where
the features were the corrected SAR backscatter
coefficients (c° soil VV, c® soil HH),
incidence angle (0), and NDVI. The target
variable was the co-located in-situ mv. The RF

model, implemented in Python's Scikit-learn
library, was chosen for its ability to handle non-
linear relationships. The dataset was split 80/20
for training and testing, with hyperparameter
tuning conducted via 5-fold cross-validation to
prevent overfitting and ensure generalizability.
Model Application
For bare soil retrieval, the semi-empirical Oh
model (2004) was employed, leveraging its
simplicity and effectiveness for agricultural
surfaces:
o Key equations:
o p=0%y/cy = [1—
(29/7.[){1/3 ro"{0.33}} e{—ks}]z
o q=0"y/0%y =
0.095 (0.065 +
sint18} g)(14} (1 —
e (=09 (k)" 25}}y
(¢] O'OVV =~
0.11 m, %7} (cos 6)22} (1 —
e (=032 (k9)"(1.8}}
Where k = 2n/A (wave number), s = RMS height
(cm), mv = volumetric moisture (m*/m?), and 6 =
incidence angle. Inversion was conducted using a
lookup table approach, assuming a Gaussian
correlation function for roughness with | = 5-20
cm, derived from field observations of plowed
vertisols.
In vegetated areas, the Water Cloud Model
(WCM) was adapted to correct for canopy
effects: 6° total = 6° veg + 12 6°_soil, where 12 =
exp(-2B V / cosB), and V = vegetation water
content estimated from NDV1. A hybrid physical-
ML framework was implemented, combining the
Integral Equation Model (IEM) with Random
Forest regression to handle the heterogeneity of
Marathwada’s landscapes. Training datasets were
generated using IEM simulations (mv 0-30%, s
0.5-3 cm) augmented with in-situ measurements,
with transfer learning applied to adapt global
models to local conditions, addressing data
scarcity [3,19].
Environmental Integration
The analysis was stratified by environmental
conditions using a multi-temporal approach: (1)
Dry season (low mv <5%, high temperature 40-
42°C, NDVI <0.3) for roughness-dominated
retrieval; (2) Monsoon season (high mv 20-30%,
rainfall 700-900 mm, NDVI 0.4-0.6) with
vegetation correction; and (3) Transitional
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periods (mv 5-15%, moderate humidity 50-70%)
for temperature and humidity impacts.
Thresholds (e.g., NDVI >0.3) guided model
selection, with NISAR’s L-band prioritized for
humid, vegetated conditions due to its deeper
penetration.

Validation

SAR-derived mv and s were validated against in-
situ data using statistical metrics: Root Mean
Square Error (RMSE), bias, Pearson correlation
coefficient (r), and unbiased RMSE (UbRMSE).
Expected RMSE targets were <5% vol for mv and
<0.5 cm for s in bare fields, with cross-validation
using independent village samples. Sensitivity
analyses assessed model robustness to incidence
angle (30-40°) and polarization (VV/HH/HV),
incorporating meteorological data to
contextualize seasonal effects.

Statistical Validation Metrics

The performance of the soil parameter retrieval
was quantitatively assessed using a suite of
statistical metrics by comparing the SAR-derived
values (x_pred) with co-located in-situ
measurements (x_meas). The primary metrics
included the Root Mean Square Error RMSE =
V[Z(x_pred - x_meas)? / N], which quantifies the
absolute average magnitude of the errors; the
Coefficient of Determination (R2), which
indicates the proportion of variance in the in-situ
data explained by the model; and the Bias (Bias =
Y(x_pred - x_meas) / N), representing the model's
average tendency to over- or under-estimate the
true values. Furthermore, the unbiased RMSE
(ubRMSE = V(RMSE? - Bias?)) was calculated to
represent the precision of the retrieval after
removing the influence of systematic bias. To
ensure a robust evaluation, this validation was
performed exclusively on a 20% hold-out set of

in-situ data that was not utilized during the model
training process.

Results

In-situ data from Parbhani district, as detailed in
local soil reports and aggregated in the provided
Excel dataset, reveal consistently low surface
moisture levels, averaging approximately 3.43%
gravimetric (corresponding to ~4-5% volumetric
when adjusted for bulk density of 1.3-1.5 g/cm?).
This is characteristic of semi-arid dry periods
prevalent in the region, where organic carbon
(OC) averages 0.48%, electrical conductivity
(EC) 0.25 dS/m, and pH 7.7, indicating slightly
alkaline soils with moderate nutrient retention but
limited water-holding capacity due to high clay
content in vertisols. These factors contribute to
rapid drying post-rainfall events, with water
holding capacity (WHC) varying from 32% to
73.3% across samples (e.g., Moha: 73.3%,
Hatgav: 34.0%, Debendra: 32.0%). Extending
this analysis to the broader Marathwada region,
incorporating data from Hingoli, Nanded, Jalna,
Beed, and Dharashiv districts, shows similar
patterns but with district-specific variations. For
instance, Hingoli exhibits a higher average OC of
0.32%, EC 0.38 dS/m, and pH 7.4, suggesting
slightly better organic retention in some villages
like Waranga Phata (OC 0.54%). Nanded
averages OC 0.45%, pH 7.8, with sites like Nivga
showing lower moisture potential (OC 0.51%).
Jalna, Beed, and Dharashiv follow suit with OC
averages of 0.38-0.48%, reinforcing the semi-arid
soil profile across Marathwada.

To contextualize under varying environmental
conditions, the following table summarizes
typical volumetric soil moisture (mv) ranges,
influencing factors, and SAR sensitivity, derived
from in-situ observations and literature on semi-
arid regions:

Table no.1: Season wise mv and SAR sensitivity

Condition  Typical Influencing Factors

mv
(m*/m?)

High 0.20-

Rainfall 0.30

(Monsoon)
saturation.

SAR Sensitivity

Intense monsoon precipitation (~950  High ¢° due to elevated dielectric
mm annually) and elevated humidity  constant (g); vegetation attenuation
(70-80%) induce temporary soil

(e.g., from soybean crops) corrected via
cross-polarization (HV) or models like
Water Cloud Model (WCM).
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SAR Sensitivity

High temp. (40-42°C), low humidity Low ©° surface roughness dominates
(40-50%), rapid evaporation, and soil backscattering, with minimal moisture

decomposition  (e.g.,

cotton), moderate temperatures (25- H/A/a) reduces vegetation bias; L-band
residual penetration aids

in sub-canopy mv
retrieval.

Low vegetation, remnants of rainfall, Optimal for direct mv and roughness

Condition  Typical Influencing Factors
mv
(m*/m?)
Dry Season  <0.05
(Summer)
cracking in vertisols reducing retention. contribution.
Moderate 0.10— Crop cover (NDVI 0.4-0.6 for soybean, Polarimetric
Vegetation 0.15
(Kharif) 30°C), and post-monsoon
moisture.
Post-Harvest  0.05-
(Bare) 0.10

exposing bare soil to erosion.

and transitional humidity (50-60%), retrieval; C-band sensitive to surface

changes, L-band for deeper profiles.

Table no. 2: District-wise comparison of average key soil parameters

District

Parbhani 7.7 0.25 0.48
Hingoli 7.4 0.38 0.32
Nanded 7.8 0.29 0.45
Jalna 7.8 0.41 0.38
Beed 7.9 0.62 0.48
Dharashiv 7.6 0.42 0.39

Statistical analysis of the Parbhani dataset (n=14
villages, e.g., Zadgaon, Porvad, Pokharni) shows
variability in parameters linked to moisture
dynamics: OC ranges from 0.22% to 0.78%
(mean 0.48 + 0.17%), correlating positively with
WHC; EC from 0.10 to 0.66 dS/m (mean 0.25 +
0.15 dS/m), indicating low salinity but potential
for moisture conductivity effects; and phosphorus
(P) from 9.73 to 19.2 kg/ha (mean 14.01 + 3.29
kg/ha), influencing root development and water
uptake. Similar variability is observed in other
districts; for example, Jalna's lower OC (mean
0.38 = 0.12%) correlates with reduced WHC,
while Beed's higher EC (0.62 dS/m) suggests
potential salinity impacts on moisture retrieval
accuracy in SAR models.

SAR simulations, based on the Oh model (2004)
for C-band (5.3 GHz, A = 5.6 cm), incidence angle
0=30°, and in-Situ mv ~0.034, yield
backscattering coefficients (c° VV) that align
with expected responses. For roughness RMS

205

167
196
184

pH EC (dS/m) AOC (%) N (kg/ha) P (kg/ha) K (kg/ha) mv (m3/m3)

14.0 628 0.045
15.8 333 0.042
14.6 365 0.045
14.1 536 0.045
16.5 343 0.045
9.4 451 0.045

height s=0.5 cm (smooth, tilled fields), c° VV =
-31.03 dB at mv=0.034, increasing to -24.41 dB
at mv=0.30 (post-rain). For s=1 cm (moderate
roughness), values range from -26.18 dB (dry) to
-19.56 dB (wet); for s=2 cm (rough, plowed), -
2255 dB to -15.93 dB. These simulations
indicate a 5-7 dB increase in 6° with mv tripling
from dry to wet conditions, and 3-5 dB
enhancement per doubling of s, highlighting
roughness's amplifying effect on signal in low-
moisture scenarios typical of Parbhani. Extending
simulations to NISAR-like L-band data (1.26
GHz), deeper penetration yields ¢ VV =-1810 -
12 dB for mv=0.034-0.30 at s=1 cm, better suited
for vegetated kharif fields.

Integration with recent advancements, such as
simulated NISAR L-band data (1.26 GHz),
demonstrates promising retrieval accuracies for
crops relevant to Parbhani (e.g., soybean) [4,22].
Using machine learning models like Random
Forest Regression with vegetation correction via

© Association of Academic Researchers and Faculties (AARF)
A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories.

Page | 50



WCM, studies report R2=0.92 and RMSE=0.042
m3/m? for mv in soybean fields, outperforming
other algorithms (e.g.,, XGBoost: R2=0.85,
RMSE=0.054 m3/m3). For dielectric constant (e,
proxy for mv), Random Forest achieves R2=0.89
and RMSE=6.78 in soybeans, improving with
polarimetric decompositions (Freeman-Durden,
H/A/Alpha). Preliminary NISAR results from the
IGARSS 2025 conference indicate first soil
moisture products with RMSE <0.04 m3/m3 over
Indian agricultural sites, validating dual-band
efficacy in  semi-arid  Marathwada-like
conditions. Sentinel-1 applications in similar
regions, such as Kharagpur, show field-scale mv
retrieval with RMSE 0.05-0.06 m3/m?3 using
hybrid models, adaptable to Marathwada's
vertisols [9,26].

Village-specific insights from the dataset further
illustrate moisture-related patterns: In Zadgaon
(OC=0.78%, high N=169 kg/ha), inferred mv
potential is higher due to better organic retention,
while in Dhondi (0C=0.22%, low N=115.9
kg/ha), drier conditions prevail. SAR-derived mv
maps, ly applied, would show spatial gradients,
with bare post-harvest areas (e.g., Lohagaon:
0C=0.38%) exhibiting o¢° dominated by
roughness (estimated s=1-2 cm from porosity
data ~1.3 g/cm?). Across Marathwada, spatial
analysis reveals hotspots in Beed and Jalna with
higher variability (OC SD +0.15%), correlating
with drought-prone zones identified in recent
remote sensing studies.

Validation Scatter Plot: Figure 3 presents a
scatter plot of SAR-derived mv against the
matched in-situ measurements (n=50). Fig. 3:
Validation scatter plot comparing hybrid
IEM-RF and standalone Oh  model
performance

o O O O
o N B> O 00

0 2 4 6

R? RMSE (m3/m?3)
Fig. 3: Validation scatter plot

The hybrid IEM-RF model achieved an R of 0.88
and an RMSE of 0.047 m3/m3, significantly
outperforming the standalone Oh model
(R2=0.72, RMSE=0.068 m3m3). This level of
accuracy is competitive with recent field-scale
studies that also leverage multi-sensor data
integration [11, 12].

NISAR Simulation Insight: Simulations using
NISAR-configuration L-band data showed a
superior ability to maintain high accuracy (RMSE
~0.045 m3/m3) in densely vegetated scenarios
(NDVI > 0.5) where C-band performance
degraded, highlighting its future potential.

Table no. 3: Table 3: Performance comparison
of soil moisture retrieval models across different
land cover conditions

Retrieval | Model R2 RMSE | ubRMSE
Scenario | Used (m3/m3) | (M3/m3)
Bare Soil oh
(NDVI < 0.75 | 0.055 0.053
Model
0.3)
Bare Soil | IEM-
(NDVI< | RF 0.90 | 0.042 0.041
0.3) Hybrid
Vegetated | WCM
(NDVI> | +0Oh | 0.65]|0.075 0.072
0.3) Model
WCM
Vegetated | +
(NDVI > | IEM- | 0.85 ]| 0.052 0.050
0.3) RF
Hybrid

~ The validation results, summarized in Table 3, are
consistent with the performance of similar hybrid
models reported in recent literature [3, 19].
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Discussion

The findings of this study affirm the significant
potential of SAR remote sensing for monitoring
soil parameters in the complex semi-arid
environment of Marathwada, while also
highlighting critical challenges that must be
addressed for operational application. The
superior performance of the hybrid IEM-Random
Forest model, which achieved a lower RMSE
compared to the standalone Oh model, can be
attributed to its inherent capacity to learn
complex, non-linear relationships between radar
backscatter, soil moisture, and surface roughness
[3,16,19]. Purely physical models like Oh's, while
strong in their theoretical foundation, often
struggle to fully capture the heterogeneity of real-
world agricultural landscapes, where variable soil
texture, micro-topography, and residue cover
create a complex scattering environment. The
machine learning component  effectively
complements the physics-based approach by
empirically adjusting for these localized, non-
linear effects, leading to a more robust retrieval.
However, this study's conclusions are tempered
by several key limitations, the most substantial
being the indirect estimation of surface roughness
(S). Our reliance on inferred s values (0.5-2 cm)
from secondary soil properties, rather than direct
field measurements with a pin profiler,
undoubtedly introduced significant uncertainty.
This challenge of accurately characterizing
surface roughness is a common and recognized
source of error in SAR-based soil property
estimation [20]. It is estimated that this proxy for
roughness could have induced an error of
approximately +1-2 dB in the backscatter
coefficient (c°), which subsequently propagates
to a potential increase in the RMSE for soil
moisture (mv) of up to 0.02 m3/ms3. This
underscores a fundamental requirement for future
research: comprehensive field campaigns
employing direct roughness measurement
techniques are indispensable for calibrating
scattering models and reducing this primary
source of error.

A further complicating factor identified in our
analysis is the influence of soil salinity,
particularly in districts like Beed with elevated
electrical conductivity (EC). The observed

moderate correlation between higher EC and an
overestimation of SAR-derived mvis a known
phenomenon, where dissolved salts in the soil
water increase the dielectric constant, thereby
inflating the radar  backscatter  signal
misinterpreted as moisture. This "salinity bias"
presents a notable challenge for accurate water
resource assessment in semi-arid regions [8,20].
Studies in hyper-arid regions have quantitatively
shown how dissolved salts inflate the radar
backscatter  signal, leading to moisture
overestimation [8]. A promising path forward
would be the integration of regional soil salinity
maps from historical surveys or dedicated EC
sensors into a multi-parameter inversion
framework, allowing for the correction of this
confounding effect.

Looking ahead, the NASA-ISRO SAR (NISAR)
mission heralds a transformative era not merely
due to its technical specifications but because of
its operational, open-data policy. The guaranteed,
global coverage of dual-frequency L and S-band
data will overcome the vegetation penetration
limitations of current C-band systems, providing
reliable data during critical crop growth stages.
This reliable data stream is the key to
transitioning from research to operational
services. We envision that by late 2026,
automated processing chains could generate high-
resolution soil moisture maps for Marathwada,
which, when integrated with India
Meteorological Department (IMD) weather
forecasts, can form the backbone of a decision-
support system. Such a system could deliver
actionable, field-scale irrigation advisories to
farmers, ultimately enhancing  water-use
efficiency and resilience in this drought-prone
region.

Broadening the scope to the Marathwada region,
the district-wise variations in soil parameters—
such as higher OC in Hingoli (0.32%) and lower
in Jalna (0.38%)—highlight heterogeneous
moisture  dynamics influenced by local
topography and farming practices. In Nanded and
Beed, elevated P levels (~14-15 kg/ha) correlate
with better water uptake in crops, but salinity
effects (EC up to 0.62 dS/m in Beed) could bias
SAR retrievals, as dielectric models may
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overestimate mv in saline vertisols without
calibration. Recent studies in arid Indian regions,
such as simultaneous retrieval of soil moisture
and salinity using Sentinel-1 data with revised
dielectric models, demonstrate RMSE reductions
of 10-15% when accounting for salinity,
applicable to Marathwada's semi-arid profiles.
The study’s reliance on SAR data (e.g., Sentinel-
1, NISAR) underscores a key limitation: the
sparsity of in-situ measurements across
Parbhani’s 14 sampled villages limits validation
granularity. Roughness (s=0.5-2 c¢m) is inferred
from porosity and density (1.3-1.5 g/cm3),
lacking direct field measurements (e.g.,
profilometer data), which could introduce
uncertainties of +0.5 cm in SAR inversion.
Additionally, the dataset’s focus on chemical
parameters (e.g., P, K) rather than physical
roughness metrics highlights a need for
comprehensive ground campaigns, especially
given vertisol heterogeneity [8, 26]. This is
echoed in recent multi-modal approaches for bare
surface soil moisture and roughness estimation
using NISAR-like polarizations (single, double,
guad), which show improved accuracy (RMSE
<0.04 m3m3) when incorporating direct
roughness data [4,12].

Environmental variability further complicates
retrieval. Rainfall’s erratic nature (700-900 mm
annually, with 40-80% lost to runoff) creates
transient mv spikes, detectable only with high
temporal resolution SAR (e.g., Sentinel-1’s 6-day
revisit), yet cloud cover during monsoon may
necessitate NISAR’s L-band  penetration.
Humidity’s seasonal swing (40-80%) correlates
with surface mv, but its effect on dielectric
properties requires calibration against local soil
texture (high clay content), which was not fully
characterized in the provided data. In semi-arid
Marathwada, machine learning algorithms (e.g.,
Random Forest, XGBoost) integrated with
Sentinel-1 and optical data have enhanced mv
retrieval, achieving R2 >0.85 by addressing
humidity and vegetation biases [2,13]. Further
advancements are being driven by deep learning
approaches applied to both radar and passive
microwave data [17, 19].

The advent of NISAR offers transformative
potential with its dual-band (L- and S-band)

polarimetric data, achieving RMSE <0.05 m3/m3
in soybean fields as per preliminary studies. This
could address Parbhani’s challenges by
penetrating dense kharif vegetation and resolving
sub-surface moisture, critical for deep-rooted
crops like  cotton.  Machine learning
enhancements, such as Random Forest (R2=0.89
for €), promise to refine inversion under variable
conditions, though training data scarcity remains
a bottleneck. Validation of NISAR's multi-scale
soil moisture retrieval algorithm across diverse
landcovers (forest, shrubland, cropland) using
ALOS-2 data shows performance at resolutions
from 200 m to 10 m, with particular efficacy in
semi-arid agriculture, reducing biases by 20%
over traditional models. For Marathwada,
NISAR's high-resolution (3-10 m) products could
map crop-specific mv, as demonstrated in active-
passive algorithms over Indian sites, yielding
~500 m soil moisture data validated across kharif
and rabi seasons [4, 23].

Comparative analyses with global semi-arid
studies (e.g., Sahel, Rajasthan) suggest SAR’s
adaptability, with RMSE typically 4-6% vol, but
Parbhani’s unique vertisol cracking and
agricultural practices (e.g., plowing) may require
region-specific roughness models. The observed
3-5 dB o° increase per roughness doubling
(s=0.5-2 cm) aligns with these findings, yet local
validation is essential to confirm applicability.
Transfer learning approaches using SAR and
optical data have addressed sample scarcity in
similar Indian contexts, improving DL model
performance for mv retrieval [2, 16]. The ongoing
development of global, high-resolution soil
moisture products from Sentinel-1 underscores
the move towards operational monitoring [18,
23], while reviews chart the future trajectory of
these technologies [14].

In conclusion, SAR’s potential in Parbhani is
substantial, bridging in-situ data gaps with
synoptic monitoring. Challenges in roughness
measurement, vegetation correction, and data
resolution can be mitigated with NISAR and ML,
positioning SAR as a cornerstone for drought
management and precision agriculture in
Marathwada by 2026. Future research should
leverage NISAR's operational data for real-time
applications, integrating multi-layer forecasts to
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predict mv in vertisol-dominated areas. While
SAR has been widely used for soil moisture
retrieval, its application and validation in the
specific context of Indian semi-arid vertisols,
with their unique cracking patterns and low
moisture ranges, remains limited.

Conclusion

This study has successfully demonstrated that
a hybrid physical-machine learning approach
to SAR remote sensing can accurately map
soil moisture across the challenging semi-
arid environment of Marathwada. We
validated that the method is sensitive to the
critical low-moisture conditions that define
the region's drought vulnerability. While
challenges in direct roughness measurement
and salinity effects remain, the pathway
forward is clear. The imminent operational
phase of the NISAR mission, providing free
and open L & S-band data, represents a
quantum leap in our capability. This work
lays the foundational methodology to
leverage this new data stream, positioning
SAR not just as a research tool, but as a
cornerstone for decision-support systems that
can enhance agricultural resilience, optimize
water use, and support the livelihoods of
farmers in Marathwada and similar regions
worldwide.

The advent of the NASA-ISRO Synthetic
Aperture Radar (NISAR) marks a significant
advancement, with its dual-band (L- and S-band)
polarimetric data poised to revolutionize soil
monitoring in Marathwada. Preliminary studies
indicate RMSE <0.05 m3/m3 for soybean fields,
leveraging L-band’s penetration through dense
vegetation and S-band’s sensitivity to surface
roughness, tailored to the region’s agricultural
needs (e.g., cotton, soybean). [4,22] Coupled with
machine learning enhancements like Random
Forest (R2=0.89 for dielectric constant), NISAR
data are expected refine inversion models,
addressing current limitations in in-situ data
sparsity and  roughness  characterization.
Validation efforts using ALOS-2 data across

diverse landcovers (e.g., cropland, forest) suggest
NISAR’s multi-scale retrieval (200 m to 10 m)
could reduce biases by 20% over traditional
models, offering crop-specific moisture maps for
Marathwada region.
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