
 
 

 

© Association of Academic Researchers and Faculties (AARF) 
A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial 
Directories. 

 

Page | 83  

Propagation of plane waves  from the free surface 

 
Dr. Savita Devi, Assistant Professor 

Department of Mathematics,  

Govt. P. G. College, Hisar-125001(Haryana)-India 

Email:savita.007@rediffmail.com 

 

Abstract 

It has been observed that three coupled plane waves travel through the 

medium with distinct speeds. Using appropriate boundary conditions, the 

amplitude and energy ratios of various reflected waves are calculated and the 

numerical computations have been carried out with the help of MATLAB 

programming. The numerical values of reflection coefficients are presented 

graphically to exhibit the effect of fiber- reinforcement. The expressions of 

energy ratios have also been obtained in explicit form and are shown 

graphically as functions of angle of incidence. It has been verified that during 

reflection phenomena, the sum of energy ratios is equal to unity at each angle 

of incidence. 
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1. INTRODUCTION 

The classical theory of thermoelasticity, involving infinite speed of propagation of 

thermal signals, contradicts physical facts. To eliminate the paradox of infinite speed 

for propagation of thermoelastic disturbances, various generalized thermoelasticity 

models have been developed, which involve hyperbolic governing equations. Among 

these generalized theories, the extended thermoelasticity theory introduced by Lord  

and Shulman (L-S) [1] involving one relaxation time (known as single-phase-lag 

model) and the temperature-rate-dependent theory of thermoelasticity proposed by 

Green and Lindsay [2] involving two relaxation times, are two important models of 

generalized theory of thermoelasticity. After that, providing sufficient basic 

modifications in governing equations, Green and Naghdi [3-5] established three 

different models of thermoelasticity, referred to as G-N theory of types I, II, III. 

Generalized thermoelasticity theories are more realistic than conventional 

thermoelasticity theories in dealing with practical problems, such as laser units, 

energy channels, nuclear reactors etc. 

Wave propagation in a reinforced medium plays an important role in civil engineering 

and geophysics. Fiber reinforced composites are used in a variety of structures due to 
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their low weight and high strength. Belfield et al. [6] gave the idea of introducing 

continuous self-reinforcement at every point of an elastic solid.  

Chattopadhyay and Choudhury [7] investigated the reflection and transmission of 

magneto-elastic shear waves in a self-reinforced media. The problem of surface wave 

propagation in a fiber- reinforced, anisotropic elastic media was explained by 

Sengupta and Nath [8]. Singh and Singh [9] explained the problem of reflection of 

plane waves at the free surface of a fiber-reinforced elastic half-space. Singh [10] 

discussed the propagation of plane waves in a fiber-reinforced, anisotropic, 

generalized thermoelastic media and derived the frequency equation. 

Abbas [11] examined the nature of plane waves in a fiber-reinforced, anisotropic 

thermoelastic half-space by applying the theory of thermoelasticity with energy 

dissipation. Gupta and Gupta [12] explored the effect of initial stress on the 

propagation of plane waves in a rotating, transversely isotropic medium in the context 

of G-N theory of types II and III. Kumar et al. [13] studied the reflection of plane 

waves at the free surface of thermally conducting micropolar elastic medium with two 

temperatures. Kumar et al. [14] investigated the propagation of Rayleigh surface 

waves in an isotropic, microstretch, thermo-diffusive solid medium under a layer of 

inviscid liquid. Ailawalia et al. [15] presented a study on two-dimensional 

deformation of fiber reinforced, micropolar, thermoelastic medium in the context of 

Green-Lindsay theory. Said and Othman [16] scrutinized the effect of gravity field in 

a fiber-reinforced thermoelastic medium with temperature dependent properties under 

three-phase-lag theory of generalized thermoelasticity. Abouelregal [17] solved a two- 

dimensional problem of generalized thermoelasticity for a fiber-reinforced, 

anisotropic thick plate under initial stress in the context of fractional order heat 

conduction theory. Kalkal et al. [18] presented a study on the thermo-viscoelastic 

interactions in a homogeneous, isotropic, micropolar, elastic medium with rotation 

under three-phase-lag effects. Deswal et al. [19] investigated the effects of gravity and 

initial stress in a fiber-reinforced, anisotropic, thermoelastic half-space with diffusion. 

In the present manuscript, we have studied the possibility of wave propagation in a 

fiber-reinforced, anisotropic thermoelastic medium in the context of L-S model. The 

formula for amplitude ratios and energy ratios corresponding to various reflected 

waves have been evaluated, when a set of coupled waves strikes obliquely at 

boundary surface of the assumed model and their variations with angle of incidence 

are presented graphically. The phase speeds of various existing waves are computed 

and their variations are depicted graphically against angle of incidence. It has been 

verified that during reflection phenomena, the sum of energy ratios is equal to unity at 

each angle of incidence. Some comparisons have been made in figures to estimate the 

effects of fiber-reinforcement parameters. The propagation of waves in such materials 

has many practical applications in various fields such as atomic physics, industrial 

engineering, aerospace, thermal power plants as well as chemical pipes. 
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2 BASIC EQUATIONS 

The   field   equations   and   constitutive   relations   for   a   fiber-reinforced
→  

linear 
thermoelastic anisotropic medium with respect to the reinforcement direction a in the 

context of L-S theory are: 

Constitutive relations 

 ij   ekkij   2T eij    akamekmij   aia jekk 

2 L  T ai ak ekj   a jakeki   ak amekmai a j   ijij . (1) 

Equation of motion 

 ji, j  u̇̇i . (2) 

Heat conduction equation 

K     

1

 c ˙  T  u˙  . (3) 
ij   ,ij  0 

t 
 E 0   ij   i, j 

 

 

Strain-displacement relation 

e  
1 
u  u  , (4) 

 

ij 
2 

i, j j ,i 

 

where  ij's are the components of stress, eij ’s are the components of strain, 

 ,  , L  T  are reinforcement parameters, , T are elastic constants, ij is the 

Kronecker delta,   T  T0 , T is absolute temperature, T0 is temperature of the 

 medium in its natural state assumed to be 
 

 1, 
→ 

 a , a , a  , where 
a 1 2 3 

0 

a2  a2  a2  1 , a  1, 0, 0 is the fiber-direction,  is the mass density, ij is the 

thermal elastic coupling tensor, cE is the specific heat at constant strain, Kij    is 

thermal conductivity and 0 is the thermal relaxation time. 

T 
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0   0 q 0   0 q 

In the above equations, a comma denotes material derivative and the 

summation convention is used. 
 

3 FORMULATION OF THE PROBLEM 

We consider the problem of a fiber-reinforced anisotropic thermoelastic half-space in 

the context of L-S theory. Choose a Cartesian co-ordinate system (x, y, z) having the 

surface of the half-space as the plane x = 0, with x-axis pointing vertically downwards 

into the medium. We restrict our analysis to xy-plane. Thus, all the considered 

function
→
s  will  depend  on  time  t  and  the  coordinates  x  and  y.  So,  the  displacement 

vector u will have the components: 

u  ux  u  x, y, t , v  uy  v  x, y, t , w  uz  0 . (5) 

Taking into consideration (1), the requisite stress components are given by 

  A u 
 A

 
 

v 
   , 

 

 
(6) 

xx 11 
x 

12 
y 

11 

 

  A u 
 A

 
 

v 
   , 

 

 
(7) 

yy 12 
x 

13 
y 

22 

 

   
 u 

 
v  

,
 

 
  

 (8) 
xy L  

y
 x 





where 

 


A11    2  T   4L  T    , 

 

 
A12     , 

 

 
A13    2T . 

Inserting the stresses defined in eqs. (6)-(8) into (2) along with the consideration of 

two-dimensional problem, the equation of motion takes the form: 

 
2u 







2u 






2v 
 






2u 
  




t 2 A11 
x2 A

21 
xy 

L y2 11 
x 

, (9) 

 
2v 

 
t 2 

2v 



L x2 

2u 
A21 

xy 

2v 
 A13 

y
2 


 
. (10) 

22 
y

 

From (3), one can obtain 

 2 2  




  ˙ 
 

 

u˙ 
 

 

v̇  


 K11 
x

2 
 K22 

y
2   1 0 

t 
 cE  T011 

x 
 T022 

y 
 , (11) 

 
where 

 



A21  A12  L . 

  

In order to find non-dimensional forms of the governing equations, let us define the 

following set of dimensionless variables: 

 x, y, u, v  c   x, y, u, v, t,     c2 t,   , 


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
12 13 L 21 3 

K 
6 

T 

c K 

c K 


0 

 

ij 
ij 

c2 

 

,   
11  , (12) 
c2 

 
where 

 


0 0 

 

 

 

 
cE , c2  

A11 . 
  

K11 

Making use of dimensionless parameters, eqs. (6)-(11) recast into the following forms 

(dropping the primes): 

  
u 

 B 
v 

  , (13) 
  

xx 
x

 1 
y 

  B 
u 

 B 
v 

 B  , (14) 
  

yy 1 
x 

2 
y 

3 

 

  B  u 
 
v  

, (15)
 

 
  xy 4  

y
 x 




 

2u 
 
2u 





 

2v 






2u 
 




t 2 

2v 






x2 

2v 
 

 

B5 
xy 

2u 

B4 
y2 

2v 
 

 

x 
, (16) 




t 2 B4 
x

2 
 B5 

xy 
 B2 

y
2 
 B3 

y 
, (17) 

 2 






2     ˙ u˙ v̇  
 

x2 B6 
y

2   1 0 
t 
  B7 

x 
 B8 

y 
 , (18) 

 

where 

  

 B1, B2, B4, B5  
1 

 
 

A11 

 A , A ,  , A , B  22 , 
11 

B  K22 , 

11 

B7  





2 

0 11 

2 

0  11 0 

T0 1122 
 

8 2 

0  11 0 

 
 

4 SOLUTION OF THE PROBLEM 

For the analytic solution of eqs. (16)-(18) in the form of the harmonic travelling 

waves, we suppose the solution of the form: 

u, v,   x, y, t   u1, v1, 1exp k x cos  y sin  t  , (19) 

where k is the wave number,  is angular frequency having the definition   kV , V 

being the phase velocity and sin , cos  denotes the projection of wave normal 

onto the xy-plane. 

0 

, 

B . 
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0 

11 12 1 13 1 14 1 

13 1 21 12 1 22 1 

 

Substitution of (19) into eqs. (16)-(18) gives us 

C k 2  C u  C k 2v  kC   0 , (20) 

C k 2u  C k 2  C v  kC   0 , (21) 

C ku  C kv  C k 2     0 , (22) 

 
where 

31 1 32 1 33 1 

C  cos2   B sin2  , C  2 , C  B cos sin , 
11 4 12 13 5 

C   cos , C  B cos2   B  sin2  , C  B sin , 
14 21 4 2 22 3 

C   B cos , C   B sin , C  cos2   B sin2   , 
31 7 

 

    2 . 

32 8 33 6 

The condition for existence of non-trivial solution of system of above three equations 

provide us 

 
 

where 

V 
6 
 AV 

4 
 BV 

2 
 C  0 (23) 

 D D  D D  D D  D D  2  D D  D D  D D 4 

A  11  25 24  12 13  22 14  21 

D 
, 

, B  13  23 12  25 14  22 

D 

C  
 D14 D23 6 

, D  D D 
 
 D D , D 

 
 C C 

 
 C C , D 

 
 C C , 

 

D 
11  24 13  21 11 11    22 14   13 12 12  22 

D13  C14C21  C22C13 , D14  C12C14 , D21  C11C33 , D22  C14C31  C11  C12C33 , 

D23  C12 , D24  C13C33 , D25  C15C32  C13 . 

The roots of equation (23) gives three values of V 
2 
, which correspond to three 

coupled plane waves quasi- P1 qP1  , quasi- P2 qP2  and quasi- P3 qP3  propagating 

with velocities V1, V2 and V3 respectively. 
 

 

5 REFLECTION PHENOMENA AND BOUNDARY CONDITIONS 

In this section, we shall investigate the reflection phenomena of a coupled plane wave 

qP1  striking at the free boundary of considered half-space, propagating with 

velocity V1 and making an angle 0 with the normal. In order to satisfy the boundary 

conditions, we postulate that this incident qP1 wave gives rise to three reflected 


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3 

 

coupled plane waves qP1, qP2 and qP3 , making angles 1, 2 and 3 respectively with 

normal as shown in Fig. A. The full structure of the wave field consisting of the 

incident and reflected waves can be defined as: 
 

u, v,    1,  ,   A P  1,  ,   A P , (24) 

 

where 

1 1 0   0  

i1 
i i i   i 

P  exp k x cos  y sin   t  is the phase factor of the incident 
0  1 0 0 1 

wave at angle 0 with A0 as amplitude constant, 
P  exp k  x cos  y sin   t  are the phase factors of the reflected waves 

i  i i i i 

with amplitude constants 
 

 

Fig. A: Geometry of the problem showing various reflected waves 
 

Ai and i and  i i  1, 2, 3

are the coupling parameters between 

 
u1, v1 and 1 . The 

expressions of these coupling parameters are given by 

D k 2  D C k 2  C  C k 2  C 
    11 i 

12 ,   11 i 12 i 13   i 14 
i D k 2  D i kC  

13   i 14 i   15 

The amplitudes A0 , A1, A2 and A3 can be determined from the boundary conditions at 

the free surface x = 0. Since, the boundary of the half-space is adjacent to vacuum, it 
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is free from mechanical stresses. Therefore all components of stress tensor and the 

temperature must vanish at x = 0. Mathematically, these conditions may be expressed 

as: 

 xx   xy    0 . (25) 

The boundary conditions defined in equation (25) are identically satisfied if and only 

if   1  2  3 and satisfy Snell’s law, which gives the relation among angles of 

incident and reflected waves as: 

k1 sin0  k1 sin1  k2 sin2  k3 sin3 , (26) 

which can also be expressed as (extended Snell’s law): 

sin0 
 

sin1 
 

sin2 
 

sin3 
. (27)

 

V1 V1 V2 V3 

Inserting the expressions of u, v and  from equation (24) into expressions (13) and 

(15) and using relation given in (27), we obtain a system of three non-homogeneous 

equations in three unknowns by using the boundary conditions defined in (25). These 

three equations can be written in matrix form as: 
 

 

 

where 

 

 

bij Z j   Yi , 
j1 

i  1, 2, 3 , (28) 

b  

 1  




 2 


11 k1  cos1  B11 sin1  
k 
 , b12  k2  cos2  B12 sin2  

k 
 ,  1   2 

b    
  3 



13 k3  cos3  B13 sin3  
k

 
 , b21  k1B4 sin1 1 cos1  , 

3 

b22  k2B4 sin2 2 cos2  , b23  k3B4 sin3 3 cos3  , 
 

b   , b   , b   , Y  k 
 
 cos  B sin  

1 
 

, 
 

 31 1 32 2 33 3 1 1  1 1 1 1 k 




Y  k B sin  cos  , Y 

 1 

 b , Z  
Aj 

,  j  1, 2, 3 . 
 

2 1    4 1 1 1 3 31 

0 

Here, Z j  j  1, 2, 3 represent the reflection coefficients (ratio of the amplitudes of 

reflected waves to the amplitude of incident wave) of the reflected waves. 

 

6 ENERGY PARTITION 

In order to check the physical rightness of this problem, we must certify the energy 

3 



j 
A 
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xx xy 

0 

0 i 

 

balance during reflection at the free surface. Following Achenbach [20], the 

instantaneous rate of work of surface traction is the scalar product of the surface 

traction and the particle velocity. This scalar product is called the power per unit area, 

denoted by P
*   

and represents the rate at which the energy is transmitted per unit area 

of the surface. The time average of P* over a period, denoted by  P*  , represents 

the average energy transmission per unit surface area per unit time. For the present 

case, the rate of energy transmission at the free plane surface x = 0 is given by 

P*   u  ̇  v  ̇, (29) 
 

where superposed dot denotes temporal derivative. We shall now calculate P* for the 
incident and each of the reflected waves using the appropriate potentials. The energy 

ratios Ei i  1, 2, 3 of the various reflected waves are defined as the ratios of energy 

corresponding to the reflected waves to the energy of the incident wave. The 

expressions for these energy ratios Ei i  1, 2, 3 for reflected waves are defined as: 

 
 P* 

E   i , (30) 
i  P* 

where  P*  denotes the average energy carried along incident wave and  P*  (i = 

1, 2, 3) denote the average energy carried along reflected coupled waves. Thus, for an 

incident set of coupled wave having phase speed 

waves, by using expression (30), are given by 

V1 , the energy ratios of reflected 

E  
 1  2 

 1 P cos1  B11 sin1  
k 

1B4 sin1 1 cos1  z1 , 
 1 

E  
  2

 

 
 



 k2 2 

 

2 P cos2  B12 sin2  
k

 
2B4 sin2 2 cos2 k Z2 , 

 2 

E  
  3 

 
 

 1 

 k3 2 

 

3 P cos3  B13 sin3  
k

 
3B4 sin3 3 cos3 k Z3 , 

 3  1 

  
1

 

P   cos1  B11 sin1  
 

1 1B4 sin1 1 cos1  , (31) 

 k1 

where all the constants have been defined earlier. 

 

7 PARTICULAR CASE 

Neglecting fiber-reinforcement effect 

In the absence of fiber-reinforcement, we shall be left with the relevant problem in a 

homogeneous thermoelastic medium in the context of L-S theory. In this case, it is 
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sufficient to set the value of  ,  and L  T as   0,   0 and L  T . Taking 

into consideration the above mentioned modifications, the corresponding reflection 

coefficients for the incidence of a set of coupled waves propagating with speed V1 can 

be obtained from the system (28). 

 

8 COMPUTATIONAL RESULTS AND DISCUSSION 

In order to illustrate the contribution of fiber-reinforcement on the amplitude ratios, a 

numerical analysis is carried out. For the purpose of illustration, the material constants 

are taken from Abbas [11]: 

  2660 kg m3 ,   5.651010 N / m2 ,   2.46 1010 N / m2 , 

  5.66 1010 N / m2 ,   1.281010 N / m2 ,   220.90 1010 N / m2 , 

K  0.0921103 Jm1s1 deg1 , K  0.0963103 Jm1s1 deg1 , 

T0  293 K , 11  0.017 104 deg1 ,   0.015104 deg1 , 

c  0.787 103 Jkg 1 deg1 ,   0.2 s ,   3 . 

With these numerical values of parameters, we have evaluated the amplitude ratios 

and energy ratios corresponding to incident qP1 wave at different angles of incidence 

varying from normal incidence to grazing incidence. In Figs. (1-3), we have examined 

the variations of amplitude ratios in the considered medium for two different cases, (i) 

Fiber-reinforced thermoelastic medium under Lord-Shulman model (WRE, solid line) 

(ii) Thermoelastic medium under Lord-Shulman model (NRE, dashed line). 
 

 

Figure 1: Effect of fiber-reinforcement on the moduli of reflection coefficient Z1 

22 
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Figure 2: Effect of fiber-reinforcement on the moduli of reflection coefficient Z2 

 

Figure 3: Effect of fiber-reinforcement on the moduli of reflection coefficient Z3 

 

 

In Fig. 1, we have illustrated the pattern of variation of reflection coefficient Z1 

versus angle of incidence in the presence and absence of fiber-reinforcement. It can be 

seen from the plot that the presence of reinforcement decreases the modulus values of 

Z1 except in some range. Hence it has a mix effect on the profile of reflection 

coefficient Z1 . In Fig. 2, we have plotted the modulus values of the reflection 

coefficient Z2 as a function of angle of incidence in the presence and absence of 

fiber-reinforcement. It can be noticed that the presence of fiber-reinforcement 

decreases the absolute values of reflection coefficient Z2 . So, it has decreasing effect 

on the profile of reflection coefficient Z2 in whole range. The pattern of variation of 

reflection coefficient Z3 against angle of incidence has been expressed in Fig. 3. For 

both cases (with and without fiber-reinforcement), it starts from zero value near 

normal incidence, thereafter increases and decreases with increase in angle of 

incidence in the whole range. It can be noticed that fiber-reinforcement has both 

increasing and decreasing effects on the profile of reflection coefficient Z3 . 
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Figure 4: Variations of moduli of phase speed V1 against angle of incidence to 

observe the effect of anisotropy 
 

Figure 5: Variations of moduli of phase speed V2 against angle of incidence to 

observe the effect of anisotropy 
 

Figure 6: Variations of moduli of phase speed V3 against angle of incidence to 

observe the effect of anisotropy 
 
 

In Figs. (4-6), the variations in the velocities of qP1, qP2 and qP3 waves have been 

shown graphically with the angle of propagation, when   3 . The velocities of 

propagation of these plane waves are also compared with those for an isotropic 

thermoelastic media. We can see from these figures that the values of velocities vary 
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at every angle of incidence in a transversely isotropic medium while in isotropic 

medium, these values remain constant throughout the whole range. Thus, it is evident 

from the figures that the medium has an observable effect on the variations of the 

velocities. It is noticed that there exist three waves propagating through the medium. 

It is also apparent from the Figs. (4-6) that the phase speed V1 gets increased due to 

the presence of fiber-reinforcement (transversely isotropic medium). On the other 

hand, the phase speeds V2 and V3 attain smaller values in the presence of fiber- 

reinforcement. The fastest among them is the quasi-longitudinal wave and the slowest 

of them is the quasi-transverse wave. 

Figure 7: Variations of moduli of energy ratios 

 

Fig. 7 reveals the variation of modulus of energy ratios of reflected waves with the 

angle of incidence of coupled wave propagating with velocity V1 . The energy 

conversion in different ranges of angle of incidence is clearly noticed. We can see 

from the figure that the values of sum and E1 are approximately same and equal to 

1.0, because the values of E2 and E3 are very small. Since the reflection coefficients 

Z2 and Z3 are found to be very small, therefore the corresponding energy ratios E2 

and E3 are also very small. These energy ratios have been shown by dotted and 

dashed lines in figure after multiplying their original values by the factors 10
3   

and 

10
6   

respectively. It can be seen from the figure that the energy carried by reflected 

coupled wave propagating with velocity V1 is maximum in comparison to energy 

carried by other reflected waves. In the calculation of energy ratios, it has been 

verified that the sum of energy ratios is equal to unity. This shows that there is no loss 

of energy during reflection of waves. 



 

 

© Association of Academic Researchers and Faculties (AARF) 
A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial 
Directories. 

 

Page | 96  

 

 

 
 

Figure 8: Profile of amplitude ratio |Z1| against angle of incidence and frequency 
 

Figure 9: Profile of amplitude ratio |Z2| against angle of incidence and frequency 
 

Figure 10: Profile of amplitude ratio |Z3| against angle of incidence and frequency 
 

 

The 3D plots representing variations of amplitude ratios Z1 , Z2 and Z3 against 

angle of incidence  and frequency  , are shown in Figs. (8-10). Fig. 8 illustrates the 

variation of  Z1 with angle of incidence and frequency. From the figure, it is observed 

that the increase in the value of frequency results in decrease in numerical values of 

amplitude ratio Z1 . Modulus values of Z1 increases with increasing angle of 
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incidence. Fig. 9 indicates the variation of amplitude ratio Z2 against angle  of 

incidence  and frequency  . Numerical values of reflection that modulus values of 

Z2 decreases with increasing frequency  . It can be seen from the plot that modulus 

of values of Z2 decreases as we increase angle of incidence. The variation of 

reflection coefficient Z3 is plotted in Fig. 10 for wide range of  and  . Increment 

in the value of frequency has caused decrement in the numerical values of Z3 . 

 

9 CONCLUSIONS 

In this manuscript, a mathematical treatment has been presented to discuss the 

reflection phenomena in a fiber-reinforced thermoelastic medium under L-S theory. It 

has been observed that there exist three sets of coupled waves vibrating with distinct 

speeds. The effect of fiber-reinforcement is discussed numerically and illustrated 

graphically. The expressions giving the reflection coefficients and energy ratios have 

also been presented. From the analysis of the illustrations, we arrive at the following 

conclusions: 

 The presence of fiber-reinforcement parameters decreases the absolute values 

of reflection coefficient Z2 whereas on Z1   and Z3 , its presence has both 

increasing and decreasing effects. Thus, all the reflection coefficients are 

significantly sensitive towards fiber-reinforcement. 

 In an anisotropic generalized thermoelastic medium, the velocities of 

propagation of reflected waves are found to depend upon the angle of 

incidence, whereas in an isotropic medium, velocities attain constant values. 

Also, it is apparent from the figures that the phase speeds V2 and V3 get 

decreased due to anisotropy while the phase speed V1 gets increased. 

 Numerical results reveal that the sum of the modulus values of energy ratios at 

the free surface is approximately unity at each angle of incidence. This shows 

that there is no dissipation of energy during reflection phenomena at the free 

surface. 

 The reflection coefficients and energy ratios depend upon the angle of 

incidence, the elastic properties of the half-space and the frequency of incident 

wave. 
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