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Abstract:  

             The present paper provides solutions of E-C field equations for static dust sphere with 

spin by choosing a suitable form of effective density as 𝜌 = 𝜌0 (1 −
𝑟2

𝑟0
2) we have also found 

various physical parameters like pressure matter density and spin density. Further we have 

fixed the constant using boundary conditions. 
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1. INTRODUCTION: Prasanna [18] in (1975) found the analogs of some solution of fluid 

sphere of Tolman in E – C theory [14,15]. In his solution the equations corresponding to the 

classical condition of hydrostatic equilibrium was rather artificially split up into two separate 

equations so that a so – called “spin conservation equation” is satisfied. In effect this meant 

that spin does not provide any force (in the classical sense) of the equilibrium. But this 

assumption led to the difficulty that the derivative of the metric tensor components could not 

be made continuous on the boundary, which besides being a violations of Licknerowicz in 

(1955), seems difficult to accept. The junctions conditions were later discussed at some length 

by Kuchowicz in [11,12]. According to the junction conditions of the last mentioned workers 

the pressure on the surface of a Weyssonhoff fluid (Weyssonhoff and Ruabe [26]) sphere does 

not necessarily vanish. They, however, reached the erroneous conclusion that such a sphere 

doed not bounce. The error was later flashed in 1976 [9]. Raychaudhari [20(a)] has discussed 

the boundary conditions in the E – C theory for non – static fluid spheres. He has exhibited a 

particular solution for a dust sphere bouncing from a minimum volume. 
         Hehl, Heyde and Kerlick [9] have considered the Einstein’s the field equations with Spin 

and Torsion 𝑈4  theory to describe correctly the gravitational properties of matter on a 
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microphysical level. They have shown how the singularities theorems of Penrose [17] and 

Hawking [6] must be modified to apply in E-C theory. Prasanna  [18] has solved Einstein – 

Cartan field equations  for a perfect fluid distribution and adopting  Hehl’s [7,8] approach, and 

Tolmans  technique [25], obtained a number of solutions . Arkuszewski et al. [2] described the 

junction conditions in Einstein- Cartan theory. Raychaudhari and Banerji [20] considered 

collapsing spheres in Einstein- Cartan theory and showed that it bounces at a radius greater 

than the Schwarzschild radius. Banerji [3] has pointed out that Einstein – Cartan sphere must 

bounce outside the Schwarzschid radius if it bounces at all. 

               Singh and Yadav [22] studied the static fluid spheres in E – C theory and obtained a 

solution in an analytic from by the method of quadrature.  Som and Bedran [24] got the class 

of solutions that represent a static incoherent spherical dust distribution in equilibrium under 

the influence of spin. Other workers in this line are Krorie et. al. [10], Mehra and Gokhroo 

[13], Suh {23], Maurya and Gupta [15], Yadav et al [27, 28], Amorim [1], Chatterji [4], 

Purushottam and Yadav [19], Sah and Chandra [21] and Murad [16]. 

              In this paper we have obtained solution of the Einstein – Cartan field equations for 

static dust sphere with non – zero spin density taking a suitable choice of effective density. The 

constants have been fixed by using boundary conditions. 

 

2. THE FIELD EQUATIONS: 

      We take Einstein – Cartan field equations in the form given by  

(2.1)     𝑅𝑗
𝑖 = - 

1

2
 R 𝛿𝑗

𝑖 = -X𝑡𝑗
𝑖 

                     

(2.2)     𝑄𝑗𝑘
𝑖 - 𝛿𝑗

𝑖 𝑄𝑗𝑘
𝑖  - 𝛿𝑘

𝑖  𝑄𝑗𝑖
𝑖  = X𝑠𝑗𝑘

𝑖  

                 

 where  𝑄𝑗𝑘
𝑖  is torsion tensor, 𝑡𝑗

𝑖 is the canonical  asymmetric energy momentum tensor, 𝑠𝑗𝑘
𝑖  is 

the spin tensor and X = 8π. 

We consider matter distribution given by the spherically symmetric metric   

 (2.3)     d𝑆2 = 𝑒𝑣 d𝑡2 - 𝑒𝜆d𝑟2 - 𝑟2 (𝑑𝜃2 +  𝑠𝑖𝑛2𝜃 𝑑𝜙2) 

where λ and γ are functions of r, we use comoving coordinates with 𝑈4 velocity 𝑈𝑖 = 𝛿4
𝑖 . The 

orthonormal coframe is chosen as  

(2.4)     𝜃𝑖 = 𝑒𝜆/2 dr, 𝜃2 = rdθ,                                                       

               θ3 = r Sinθ dϕ, 

                 𝜃4 = 𝑒
𝑣

2 ⁄ dt                                        
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 So that, 

                𝑔𝑖𝑗 = diag (1, -1, -1, -1). 

When we assume a classical description of spin, we have  

(2.5)      𝑆𝑖𝑗
𝑘 = 𝑆𝑖𝑗𝑢𝑘                    

with 

               𝑆𝑖𝑗𝑢𝑗 = 0. 

       where 𝑆𝑖𝑗 is the antisymmetric tensor of spin density. In the case of spherically symmetry, 

the tensor 𝑆𝑖𝑗 has the only non vanishing independent component 𝑆23 = K (say) and the non – 

zero parts of 𝑠𝑗𝑘
𝑖  are  

(2.6)     𝑠23
4  = - 𝑠32

4  = K 

    Hence from Einstein – Cartan equation (6.2.2), the non zero components of 𝑄𝑗𝑘 
𝑖 are 

(2.7)     𝑄23
4  = - 𝑄32

4  = -XK              

Thus for a perfect fluid distribution with isotropic pressure p and matter density 𝜌 the field 

equations (6.2.1) finally reduce to (Prassanna) [18]). 

(2.8)     8 πp = 16𝜋2𝐾2 - 
1

𝑟2 + 𝑒−𝜆 (
1

𝑟2 +
𝑣′

𝑟
)              

(2.9)      8 π𝜌 = 16𝜋2𝐾2 - 
1

𝑟2 - 𝑒−𝜆 (
1

𝑟2 −
𝜆′

𝑟
)      

 (2.10)    
𝑒𝜆

𝑟2 =  
1

𝑟2 −
𝑣′2

4
−

𝑣′′

2
 + 

𝑣′𝜆′

4
+

𝑣′+𝜆′

2𝑟
 

where dashes stand for derivative w.r.t. r. The conservation laws gives us the relation  

(2.11)    [𝑝′ +
1

2
(𝜌 + 𝑝)𝑣′] + K(𝐾′ +

1

2
𝐾𝑣′) = 0 

   

  If we use the equilibrium condition given by 

(2.12)    𝑝′ + 
1

2
 (𝜌 +p) 𝑣′ = 0 

 We get  

(2.13)    𝐾′ + 
1

2
 K𝑣′ = 0                

From (6.2.13) we have  

(2.14)    K= H𝑒
−𝑣

2⁄ ,              

where H is a integration constant. 

             

Following Hehl [7, 8], if we define effective pressure 𝑝 and effective density  𝜌  as 

(2.15)      𝜌  = 𝜌 - 2π𝐾2,                   
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                   𝑝  = p -.....- 2 π𝐾2,                   

Thus the equations (2.8) and (2.9) finally reduce to 

(2.16)     8π𝑝 = - 
1

𝑟2  + 𝑒−𝜆 (
1

𝑟2 +  
𝑣′

𝑟
),                

(2.17)     8𝜋𝜌 = 
1

𝑟2  + 𝑒−𝜆 (−
1

𝑟2 +  
𝜆′

𝑟
),                 

Equation (2.10) remains as such. 

The equation (2.11) now be comes 

(2.18)     
𝑑𝑝

𝑑𝑟
+  

1

2
(𝜌 + 𝑝)𝑣′ = 0               

           

We use the boundary conditions  

(2.19)     [𝑒−𝜆]𝑟=𝑟0
=   [𝑒𝑣]𝑟=𝑟0

 = (1 −
2𝑚

𝑟0
), 

                   𝑝 = 0    at   r = 𝑟0 (radius of fluid sphere) 

The mass m of fluid sphere is given by  

(2.20)     m = 4π∫ 𝜌
𝑟0

𝑜
 𝑟2 dr = 4π∫ 𝑃

𝑟0

0
 𝑟2 dr - 8𝜋2  

                            ∫ 𝐾2(𝑟)
𝑟0

0
𝑟2 dr. 

Thus the correction in mass is  

                             8𝜋2 ∫ 𝐾2(𝑟)
𝑟0

0
𝑟2 dr.  

 

3. SOLUTION OF THE FIELD EQUATIONS: 

    The equations (2.10) – (2.18) describe a system of classical spin with matter density 𝜌 having 

pressure p zero. Some and Bedran [24] have assumed  

(3.1)     𝜌 = 𝜌0
𝑟2

𝑟𝑏
2               

      and obtained a solution along with Schwarzchild exterior solution given by  

(3.2)    d𝑆2 =(1 −  
2𝑚

𝑟
) d𝑡2 - (1 − 

2𝑚

𝑟
)

−1

d𝑟2   − 𝑟2 d𝜃2 - 𝑟2 𝑠𝑖𝑛2θ φ d 𝜙2 

               The effective density distribution given by (3.1) is vanishing at the centre  r = 0 and 

it goes on  increasing along the radius. Thus the fluid distribution chosen by Som and Bedran 

[24] is not regarded as physical. To make the distribution physically acceptable we take the 

effective density 𝜌  as  

(3.3)    𝜌 = 𝜌
0

(1 −  
𝑟2

𝑟𝑏
2)            
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where 𝜌
0
 is the effective density at the centre. Then from the field equations (2.16) – (2.18), 

we have 

(3.4)    𝑒−𝜆 = 1 - 
8𝜋𝜌0

15
 (5𝑟2 −  

3𝑟4

𝑟𝑏
2 ) + 

𝛼

𝑟
 

Where α is an integration constant. In order to avoid singularity at the origin α should be zero. 

Therefore taking α =0, equation (3.4) reduces to  

(3.5)      𝑒−𝜆 = 1 - 
8𝜋𝜌0

15
 (5𝑟2 −  

3𝑟4

𝑟𝑏
2 )            

while 𝑣 is given by 

(3.6)      𝑒𝑣 = [𝐴𝑐𝑜𝑠 (
𝛹

2
) +  𝐵𝑆𝑖𝑛 (

𝛹

2
)]

2

       

 

4. Some physical features: 

Pressure, matter density and spin density for the distribution are found to be  

(4.1)      8πp = 16𝜋2𝐻2 [𝐴 𝐶𝑜𝑠 (
𝛹

2
) +  𝐵𝑆𝑖𝑛 (

𝛹

2
)]

−2

           

 (4.2)     8 π𝜌 = 16𝜋2𝐻2 [𝐴 𝐶𝑜𝑠 (
𝛹

2
) +  𝐵𝑆𝑖𝑛 (

𝛹

2
)]

−2

+  8π𝑝0 (1 −
𝑟2

𝑟𝑏
2)       

(4.3)      K = H[𝐴 𝐶𝑜𝑠 (
𝛹

2
) +  𝐵𝑆𝑖𝑛 (

𝛹

2
)]

−1

                

 with A and B being constants and 

(4.4)     Ψ = log[
𝑟2

𝑟𝑏
2 −

5

6
+  {(

𝑟2

𝑟𝑏
2)

2

−
5

3
 
𝑟2

𝑟𝑏
2 +

5

8π𝑟𝑏
2𝑝𝑜

}

1
2⁄

] 

Using boundary condition as in (6.2) the constants A, B and H are found to be  

(4.5)     H = {
𝑝𝑟𝑏

2Ԉ
}

1
2⁄

[𝐴𝐶𝑜𝑠 (
𝛹1

2
) + 𝐵𝑠𝑖𝑛 (

𝛹1

2
)]        

(4.6)     A = (1 −
16π𝑟𝑏

2𝑝0

15
)

1
2⁄

𝐶𝑜𝑠 (
𝛹1

2
) -  

2𝑟𝑏

3
(

2π𝑝0

5
) 𝑆𝑖𝑛 (

𝛹1

2
) 

(4.7)     B = (1 −
16π𝑟𝑏

2𝑝0

15
)

−1
2⁄

𝑆𝑖𝑛 (
𝛹1

2
) - 

2𝑟𝑏

3
(

2π𝑝0

5
) 𝐶𝑜𝑠 (

𝛹1

2
) 

5. Conclusion and further scope: 

     Our solutions given in this chapter are physically realistic. The effective density is not 

vanishing  at the centre r = 0 and it goes on  decreasing along the radius where as in solution 

given by Som and Bedran[24] effective density is zero at the centre and increases along radius 

which is not regarded as physical. Further study on this topic can be made using some different 

condition on effective density but the solution should be physical and avoided singularity.  
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