
 

© Association of Academic Researchers and Faculties (AARF) 
A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories. 

 

Page | 16  

 

STUDY OF CHARACTERIZATION OF SEPARATION AXIOMS IN BITOPOLOGICAL 

SPACES 

Dr. Govind Kumar Singh & Dr. Mukund Kumar Singh 

ABSTRACT 

We analyse properties of some existing classes of non-continuous functions using the 

properties derived by Kariofills as well as some bitopological separation axioms, and 

conditions for its regularity and normality based on multivalued and single-valued 

functions. J. E. Kelly introduced the notion of different separation axioms for non-

continuous function which have been further developed by Kariofillis on bitopological 

spaces by taking different separation axioms using a set of non-continuous functions 

introducing the concept of ij-θ-closure operator. 

 Keywords:- bitopological space, pairwise Hausdroff, homeomorphism, disjoint subsets, 

regularity, normality. 

 Introduction  

We state some basic notions of bitopological space and relevant definitions and properties. 

Let us denote a bitopological space (X,Q1,Q2) by X. For a subset A of (X, Q1, Q2), Qi-

int(A) and Qi -c1(A) stand for the interior and closure of A in (X,Qi) respectively where i 

= 1,2. A point x  X, is said to be in the ij-θ-closure of a subset A of X, x  ij-𝜃-cl(A), iff 

for every Qi-open set U containing  x, Qj-cl(U) ∩ A ≠  where i,j = 1,2, i ≠ j. A(⊂ X) is 

called ij-θ-closed iff A = ij-θ-cl(A). A space (X, Q1,Q2) is called pair-wise Rl iff for any 

two points z , y  X, such that x . Qi-cl {y}, there is a Qi-open set U and a Qj-open set V 

such that x  U, Y  V and U ∩ V = . The space X is called pairwise Hausdroff, iff for 

any two distinct points X, y of X, there exist a Qi-open neighbourhood U of x and a Qj-

open nbd V of y such that U ∩ V =  (resp. Qj-cl(U) ∩ Qi-cl(V) = ),  where i,j == 1,2 and 

i ≠ j. X is called pairwise regular, iff for each point x of X and each Qi-closed  set F such 
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that x  F, there exist a Qi-open  set U and a Qj-open  set V such that x  U, F ⊂ V and U 

∩ V = , for i, j == 1 and 2, and i ≠ j. X will be called pairwise normal, iff for each Q1-

closed set A and a Q2-closed set B disjoint from A, there exist a Q1-open set V and a Q2-

open set U such that A ⊂ U, B ⊂ V and U ∩ V = . (i, j = 1, 2 and i ≠ j). A mapping  f: (X, 

Ql, Q2)  (Y, Pl, P2) is said to be pairwise strongly θ-continuous   weakly continuous) iff 

for each x  X and each Pi-open nbd U of f(x), there exists a Qi-open nbd V of x such that 

f(Qj-cl(V))  ⊂ U (resp. f(Qj-cl(V))  ⊂ Pj-cl(U), J(V) ⊂ Pj-cl(U)).  

 Theorem  

A function f : X, Q1, Q2) → (Y, P1, P2) is pairwise weakly continuous iff f(Qi-cl(A)) ⊂ ij-

θ-cl(f(A)), for each A ⊂ Y. 

Proof 

Case-i) Let us assume f to be pairwise weakly continuous and let Y  f(Qi-cl(A)). There 

exists x  X such that x  Qi-cl( A) and f(x) = y. Let V be a Pi-open nbd of f( x) Y.  Since 

the function f is pairwise weakly continuous, there exists Ui   Q1 with x  ui, such that 

f(Ui) ⊂ Pj-cl(V). Now, x  Qi- cl(A) =} Ui, ∩ A ≠  ⟹ f(Ui) ∩ f(A) ≠   ⟹ Pj-cl(V) ∩ f(A) 

≠  ⟹  f(x)  ij- 𝜃-cl(f(A)), i.e., y  ij-𝜃-cl(f(A)). Hence f(Qi-c1(A)) ⊂ ij-𝜃 -cl(f(A)). 

Case-ii) Only if, conversely, let x  X be arbitrary and V be a Pi-open nbd of f(x). Then 

f(x)  ij-𝜃-cl(Y - Pj-cl(V)) and hence f( x)  ij-𝜃-cl[f f-1 (Y - Pj-cl(V) )). By hypothesis of 

theorem (1.3) f(x)  f(Qi-cl(f-1(Y  - Pj-cl(V)))) so that x  Qi-cl(X - f-l(Pj- cl(V))). Thus 

there exists a Qi-open nbd U of x such that U ⊂ f-l(Pj-cl(V)) and hence f(U) ⊂ Pj-cl(V). 

Thus f is pairwise weakly continuous. 

 Theorem 

If f, g: f: (X, Ql, Q2)  (Y, Pl, P2) are pairwise almost continuous functions then the set A 

= {a  X:  f(a) ∈ ij-𝜃-cl{g(a)}} is Qi-closed in X and the set B = {(a, b) ∈ X × X : f(a) ∈ 

ij- 𝜃-cl{g(b)}} is Ti-closed in (X × X,T1,T2),  where i: = Qi × Qj, for i,j = 1,2, i ≠ j. 

Proof 

Case-I: we first show that B is Ti-closed in X × X. (a, b)  B ⇒  f(a) (j. ij-𝜃-cl{g(b)} ⟹  

there exists Vi ∈ Pi with f(a) ∈ Vi and Wj ∈ Pj with g(b) ∈ Wj such that Vi ∩ Wj = , which 
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shows that Vi ∩ Wj =   implies Pi-int(Pj-cl(Vi)) ∩ Pj-int(Pi-cl(Wj)) = . Since f, g are 

pairwise almost continuous, it implies f(Gi) ⊂ Pi-int (Pj-cl(Vi)) and g(Hj) ⊂ Pj-int(Pi- 

cl(Wj)) for some Qi-open nbd Gi of a and some Qj-open nbd H , of b, Then (Gi  × Hj) ∩ B 

= , where (a, b)  Gi × Hj. Let us now suppose (x, y  (Gi × Hj) ∩ B. Then f(x) ∈ f(Gi) 

⊂ Pi-int(Pj-cl(Vi)) ∈ Pi and g(y) ∈ g(Hj) ⊂ Pj - int(Pi-cl(Wj))  ∈ Pj. Also since (x, y) ∈ B, 

f(x) ∈ ij- 𝜃 -cl{g(y)} so that Pi-int(Pj-cl(Vi)) ∩ Pj-int (Pi-cl(Wj) ≠   which is a contradiction.  

But (Gi × Hj) ∩ B = , (a,b)  Ti-cl(B). Thus B is Ti-closed in X × X. we now show that 

the restriction to ∆(= {(a, a) : a ∈ X}) of the ith projection mapping Pi : (X × X,T1,) → 

(X,Qi) is a homeomorphism  (for i = 1,2). Let a ∈ A, then f(a) ∈ ij-𝜃-cl{g(a)}. This implies 

(a, a) ∈ B ∩ ∆ and hence a ∈ Pi(B ∩ ∆). Since B is Ti-closed in X × X, B ∩  ∆ is closed in 

the relative topology of ∆. Thus Pi(B ∩ ∆) is Qi-closed in X Hence, the theorem is proved. 

We state the results derived by S.K. Sen on characterization of bitopological separation 

axioms.   

 Theorem  

Let f, g (X, Ql, Q2)  (Y, Pl, P2) be pairwise 𝜃-continuous functions. If (Y, Pl, P2) is 

pairwise  Urysohn then the set {a  X: f(a) = g(a)} is ij-𝜃-closed in X and the set {(a, b) 

∈ X × X : f(a) = g(b)} is ij-𝜃-closed  in (X × X,T1,T2) (where Ti = Qi X Qj,. i,j  = 1, 2; i ≠ 

j). 

Proof 

Let B = {(a,b) ∈ X ×  X: f(a) = g(b)}. If (a, b) ∈ X × X - B, we have f(a) ≠ g(b). Since Y is 

pairwise Urysohn, there exist a Pi-open nbd VI of f( a) and a Pj-open nbd V2 of g( b) such 

that Pj-cl(V1) ∩ Pi-c1(V2) = . Since f and g are pairwise 𝜃-continuous there exist a Qi-

open nbd U1 of a and a Qj-open nbd U2 of b such that f(Qj-cl(U1))  ⊂ Pj-cl(Vi) and g(Qi- 

cl(U2)) ⊂ Pi-cl(V2).  Then f(Qj-cl(U1)) ∩ g(Qi-cl(U2)) =  we thus obtain that (Qj-cl(U1) × 

Qi-cl(U2)) ∩ B  = . Thus [Tj-cl(U1 × U2)] ∩ B = . Such that (a,b)  ij-𝜃-cl(B). Hence B 

becomes ij-𝜃-closed in (X × X, T1, T2). we now establish that the set {a  X:  f(a) = g(a)} 

is ij- 𝜃 -closed in X. By using the some examples, it is shown that in the converses are not 

true in general. 
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 Theorem 

The property of being a pairwise Q* T12/3 is a topological invariant.  

Proof 

Let B be a σi - Q* compact subset of (Y, σ1, σ2). Let h: (X, τ1, τ2) → (Y, σ1, σ2) be a 

pairwise Q* homeomorphism. Then h-1(B) is a τi - Q* compact subset of (X, τ1, τ2). Put A 

= h–1 (B). But (X, τ1, τ2) is pairwise Q* T12/3.  

Accordingly, A is τ j - Q* closed. But, then h (A) is σj - Q* closed because h is a τj - Q* 

closed map. That is, h (h – 1 (B)) = B. Hence B is σ2 - Q* closed. Consequently, (Y, σ1, σ2) 

is pairwise Q* T12/3.  

 Theorem  

Every pairwise Q* 𝑇𝑇1 1⁄2 space is pairwise Q* T0.  

Proof 

Suppose that X is pairwise Q*𝑇1 1⁄2 space. Let x ≠ y in X. Then there exists a τi - Q* open 

set U and τj - Q* open set V such that U ∩ V = ϕ and x ∈ U, y ∈ V or x ∈ V, y ∈ U.  

⇒  X is pairwise Q* 𝑇0   

 Definition 

A bitopological space X is said to be a pairwise Q𝑻𝟐 𝟏⁄𝟐 space if x and y are distinct points 

in X then there exist a τi - Q* open neighborhood U of x and τj - Q* open neighborhood V 

of y such that τj - Q* cl (U) ∩ τi - Q* cl (V) = ϕ, where i, j = 1, 2 and i ≠ j.  

 Theorem 

The property of being a pairwise Q*𝑇2 1⁄2 space is hereditary.  

Proof 

Let X be a pairwise Q*𝑇2 1⁄2 space. Let Y be a subspace of X, Let x, y ∈ Y with x ≠ y. Then 

x ≠ y in X. But X is Pairwise Q*𝑇2 1⁄2 space,  



 

© Association of Academic Researchers and Faculties (AARF) 
A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories. 

 

Page | 20  

⇒ there exist a τi- Q* open neighborhood U of X and τj- Q* open neighborhood V of Y 

such that U ∩ V = ϕ. But Y ⊂ X.  

⇒ there exist a τi-Q* open neighborhood 𝑈 of X and τj - Q* open neighbourhood 𝑉 of Y 

such that 𝑈 ∩ 𝑉= ϕ. Hence Y is a pairwise Q*𝑇2 1⁄2 space.  

 Theorem 

(i) Every pairwise Q*𝑇2 1⁄2 space is pairwise Q*𝑇2.  

(ii) Every pairwise Q*𝑇2 1⁄2 space is pairwise T2 ½ space.  

 (i) Definition 

A Q* T1 - space X is said to be a pairwise Q*𝑻𝟒𝟒 𝟏𝟏⁄𝟐𝟐 space if for each τi- Q* closed set A 

and τj - Q* closed set B with A ∩ B = ϕ there exists a τi- Q* open set V ⊃ B and a τj- Q* 

open set U ⊃ A such that τi - Q*cl (U) ∩τj - Q* cl (V) = ϕ, where i, j = 1, 2 and i ≠ j.  

(ii) Definition 

A Q* T1 - space X is said to be a pairwise Q*𝑻𝟓𝟏⁄𝟐 space if for every subsets A and B of X 

such that  τi- Q* cl (A) ∩ B = ϕ and A ∩τj - Q* cl (B) = ϕ there exists a τj - Q* open set U 

& a τi- Q* open set V such that A ⊂ U and B ⊂ V, τi- Q* cl (U) ∩τj- Q* cl (V) = ϕ, where 

i , j = 1 , 2 and i ≠ j.  

 Theorem 

Every pairwise Q*𝑇5 1⁄2 space is pairwise Q*𝑇5 space.  

Proof 

Let X be a pairwise Q*𝑇5 1⁄2 space. Then X is Q*T1 - space. Let A and B are disjoint subsets 

of X. Then A = τi- Q* cl (A) and B = τj- Q* cl (B).   

⇒ τi- Q* cl (A) ∩ B = A ∩ B = ϕ and A ∩τj - Q* cl (B) = A ∩ B=ϕ. 

Hence, A and B are Q* separated sets in X.  

Since X is pairwise Q*𝑇5 1⁄2space, we have τi - Q* open set U and τj- Q* open set V such 

that A ⊂ U and B ⊂V, τi - cl (U) ∩τj - cl (V) = ϕ.  
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⇒ U ∩ V = ϕ. 

 Theorem 

(i) Every pairwise Q*𝑇5 1⁄2 space is pairwise 𝑇5 1⁄2 space.  

(ii) Every pairwise Q*𝑇5 1⁄2 space is pairwise Q*𝑇4 1⁄2 space.  

Proof 

Let X be a pairwise Q*𝑇5 1⁄2 space. Then X is Q* T1 - space. Let A and B are disjoint closed 

subsets of X.  

Then A = τi - Q* cl (A) and B = τj - Q* cl (B).   

⇒τi - Q* cl (A)∩B = A∩B = ϕ and A ∩τj - Q* cl (B) = A∩B =ϕ.  

Hence A and B are Q*separated sets in X. But X is pairwise Q*𝑇5 1⁄2 space, then there 

exists a τi - Q* open set V ⊃ B and τi - Q*open set U ⊃ A such that τi - Q* cl (U) ∩ τj - Q* 

cl (V) = ϕ.  

⇒ U ∩ V = ϕ. 

Therefore, pairwise Q*𝑇5 1⁄2 space is pairwise Q*4½  space. Hence, the theorem is proved.   
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