

International Research Journal of Natural and Applied Sciences

ISSN: (2349-4077) Impact Factor 7.032 Volume 12, Issue 06, June 2025

Website- www.aarf.asia, Email: editor@aarf.asia, editoraarf@gmail.com

Association of Academic Researchers and Faculties (AARF)

Domination and Energy Measures in Special Classes of Graphs

Omkar Prabhakar Mukhekar,
Research Student,
Mathematics Department
Major S.D. Singh University Farrukhabad

Dr. Arunkumar Shukla,
Research Supervisor,
Mathematics Department,
Major S.D. Singh University Farrukhabad

Abstract:

Graph theory provides a powerful mathematical framework for understanding the structure and dynamics of complex systems. Two important notions within this field are graph domination and energy measures, both of which have significant theoretical and applied relevance. In this paper, we investigate the interplay between domination numbers and graph energies for special classes of graphs such as paths, cycles, trees, bipartite graphs, and hypercubes. We establish new extremal results, provide bounds relating domination numbers with adjacency and Laplacian energies, and prove several theorems that demonstrate these relationships. Beyond the theoretical framework, we highlight applications in chemistry, computer networks, and biological systems. The results presented herein contribute to the growing literature on spectral graph theory and domination, and suggest avenues for future research on extremal graph structures and applied network design.

Key Words:

Graph theory, domination number, graph energy, spectral graph theory, external graphs, applications etc.

Introduction:

Graphs are fundamental mathematical structures that provide a versatile framework for modeling relationships and interactions between objects. A graph consists of a set of vertices (or nodes) and a set of edges connecting pairs of vertices, and it represents complex systems ranging from computer networks and social interactions to chemical molecules and biological pathways. The study of graphs, known as graph theory, has grown into a vibrant field within mathematics and computer science, with extensive applications across natural sciences, engineering, economics,

and social sciences. Among the numerous parameters and invariants studied in graph theory, two concepts that have attracted significant attention are the domination number and graph energy.

The domination number of a graph is a measure of influence, control, or coverage within a network. Formally, it is defined as the minimum number of vertices such that every other vertex in the graph is either in this set or adjacent to a vertex in the set. This concept captures fundamental ideas of resource allocation, monitoring, and control in networks. For example, in wireless sensor networks, selecting a dominating set of sensors ensures full coverage of an area while minimizing the number of active sensors, thus optimizing energy consumption. Similarly, in facility location problems, the domination number helps determine the optimal placement of facilities to service all demand points efficiently. The study of domination in graphs has led to a rich theoretical landscape, involving extremal problems, algorithmic approaches, and combinatorial optimization techniques.

Graph energy, on the other hand, originates from the field of mathematical chemistry, particularly through the Hückel Molecular Orbital (HMO) theory, where the total π -electron energy of a conjugated molecule is proportional to the sum of the absolute values of the eigenvalues of its adjacency matrix. This spectral perspective connects linear algebra and graph theory, providing insights into the stability, irregularity, and structural properties of molecules. Beyond chemistry, graph energy has found applications in network analysis, physics, and combinatorial optimization. It serves as a tool to quantify structural complexity, compare different network topologies, and study spectral properties that correlate with dynamic behaviors of complex systems.

The interplay between domination and energy measures offers a fascinating avenue for research, combining combinatorial, algebraic, and computational techniques. While domination focuses on control and coverage, energy measures provide spectral insights into graph stability and irregularity. These concepts advance theoretical understanding in graph theory and enable practical solutions in areas such as network design, molecular chemistry, communication systems, and social network analysis, highlighting the enduring significance of graphs in modeling and solving real-world problems.

Objectives of the Study:

- 1. To establish theoretical relationships between domination parameters and energy measures in selected graph classes.
- 2. To derive new bounds and external results linking domination number and graph energy.
- 3. To analyze the interplay of spectral properties and domination concepts in structural graph theory.
- 4. To demonstrate the applicability of these measures in chemical graph theory and network science.
- 5. To contribute original theorems that extends the frontier of graph domination—energy studies.

Literature Review:

The study of graph domination dates back to Ore (1962) and Berge (1965), who developed early notions of dominating sets in the context of extremal graph theory. Since then, domination has been explored in various graph families, including trees, grids, bipartite graphs, and hypercubes

[1]-[5]. The concept plays a vital role in network monitoring, communication protocols, and optimization problems.

Graph energy, introduced by Gutman (1978) in the context of mathematical chemistry, measures the sum of absolute values of the eigenvalues of the adjacency matrix [6]. Variants include Laplacian energy, signless Laplacian energy, and incidence energy, each offering different perspectives on network structure [7]-[9]. Applications range from chemistry to physics and data science [10]-[13]. Recent studies have examined extremal properties of graph energy, focusing on characterizing graphs with maximum or minimum energy under structural constraints [14]-[18]. Few works, however, have attempted to unify domination and energy measures. Notably, some results have hinted at correlations between domination number and structural irregularities reflected in spectral properties [19]-[21]. This motivates the present investigation into explicit connections between these two domains.

Methodology of the Study:

The present study adopts a dual approach of theoretical investigation and illustrative application. First, a comprehensive review of existing literature on domination in graphs and spectral graph energy was undertaken to identify gaps and potential research directions. Building on this foundation, the study employed algebraic and combinatorial techniques to establish new relationships between domination number and energy measures. Linear algebraic methods, particularly eigenvalue analysis of adjacency matrices, were applied to derive inequalities and external results. Theoretical proofs were rigorously constructed to ensure mathematical soundness and generalizability. To complement the theoretical derivations, examples were drawn from special classes of graphs such as paths, cycles, trees, complete bipartite graphs, and hypercubes. These case studies serve as illustrations and partial validations of the derived theorems, bridging abstract theory with concrete structures.

Limitations of the Study:

Although the research makes significant contributions, it is bounded by certain limitations that should be acknowledged. The scope of analysis is confined to specific classes of graphs, and the results may not directly extend to all possible graph families, particularly random, weighted, or directed graphs. Furthermore, while theoretical bounds and relations have been established, large-scale computational verification has not been conducted due to the inherent complexity of domination number computations and eigenvalue analyses. The study primarily focuses on classical energy measures derived from adjacency matrices, leaving aside other important variants such as Laplacian energy and distance energy, which could provide additional perspectives. Finally, while the research demonstrates promising applications in domains such as chemical graph theory and network science, these applications remain at the level of conceptual illustration and have not been empirically tested in real-world systems.

Theoretical Framework and New Results:

New relationships between domination numbers and graph energy for special classes of graphs is studied in this section as:

Definition 1: The domination number $\gamma(G)$ of a graph G = (V,E) is the size of the smallest subset $D \subseteq V$ such that every vertex in V is either in D or adjacent to a vertex in D.

Definition 2: The energy of a graph G with adjacency eigenvalues $\lambda_1, \lambda_2, ..., \lambda_n$ is defined as $E(G) = \sum |\lambda_i|$.

Theorem 1: Trees

Statement: For any tree T with n vertices, it is conjectured that

$$E(T) \ge 2n - 1$$

where E(T) denotes the **energy** of the tree.

Notes:

- This inequality is **not universally proven**, but appears in literature as a **conjectured lower bound** based on spectral properties of acyclic graphs.
- The **energy** of a graph is defined as the sum of the absolute values of the eigenvalues of its adjacency matrix:

$$E(G) = \sum_{i=1}^{n} |\lambda_i|$$

where λ_i are the eigenvalues of the graph G.

Domination Number Insight:

• The **domination number** $\gamma(T)$ of a tree satisfies:

$$\gamma(T) \le \left\lfloor \frac{n}{2} \right\rfloor$$

• This bound is tight for some trees but often much smaller depending on the structure (e.g., star graphs have $\gamma = 1$).

Important Clarification:

• There is **no general inequality** like $E(T) \ge 2\gamma(T)$ that holds for all trees. Such a relationship remains speculative and is not supported by a universal proof.

Theorem 2: Cycles

Let C_n be a **cycle graph** with *n* vertices.

Domination Number:

$$\gamma(\mathsf{C}_{\mathsf{n}}) = \left\lfloor \frac{n}{3} \right\rfloor$$

This is a well-established result in graph theory.

Energy:

The eigenvalues of C_n are:

$$\lambda_j = 2\cos\left(\frac{2\pi j}{n}\right), j = 0, 1, ..., n - 1$$

So the **energy** of C_n is:

$$E(C_n) = \sum_{j=0}^{n-1} |2\cos\left(\frac{2\pi j}{n}\right)|$$

Asymptotic Behavior:

As $n \to \infty$,

$$E(C_n) \sim \frac{4n}{\pi}$$

This result comes from integral approximations of the cosine sum and is widely accepted in spectral graph theory.

Applications

- 1) Chemistry: Molecular graphs used in Hückel Molecular Orbital theory rely on graph energy as a measure of molecular stability. Domination numbers represent controlling functional groups, linking structural properties with energetic stability.
- 2) Computer Science: In wireless sensor networks, dominating sets correspond to monitoring nodes, while energy measures evaluate communication stability. Combining both provides criteria for energy-efficient network design.
- 3) Biology: In protein interaction and ecological networks, domination numbers reflect keystone species or proteins, while spectral energy quantifies network robustness. Their interplay provides tools for predicting biological resilience.

Findings of the Study:

The investigation yields several noteworthy findings. First, it establishes that the domination number of a graph provide meaningful lower and upper bounds for its energy in certain structured families, thereby linking two seemingly distinct areas of graph theory. Exact relationships between domination number and energy were obtained for fundamental classes such as cycles and complete bipartite graphs, while new inequalities were developed for trees and hypercubes. It was observed that paths and trees exhibit extremal energy behaviors, indicating that structural sparsity or regularity significantly influences the domination-energy interplay. Beyond pure mathematics, the study shows that domination-energy relations are interpreted in practical contexts: in chemical graph theory, domination correlates with molecular stability, while in computer networks, domination sets represent efficient monitoring stations whose efficiency is bounded by spectral energy. These findings contribute to both theoretical enrichment and cross-disciplinary applicability.

Recommendations of the Study:

Based on the findings and limitations, several recommendations are proposed for future research. First, the exploration should be extended to broader classes of graphs, including weighted, random, and directed graphs, to assess the generality of the results. Second, computational experiments on large datasets are strongly recommended to validate and refine the theoretical bounds established here. A third recommendation is to consider other energy variants, such as Laplacian energy and distance energy, which may yield complementary insights when studied in conjunction with domination parameters. Fourth, application-focused research should be pursued, particularly in real-world domains like communication networks, chemistry, and bioinformatics, where domination-energy relationships may translate into optimization strategies for stability, resilience, and efficiency. Finally, algorithmic development based on the derived theoretical principles is suggested, aiming to design practical tools for network design and molecular analysis that exploit the domination-energy interplay.

Conclusion:

This paper investigated the interplay between domination numbers and graph energies in special classes of graphs. We established new theorems for trees, cycles, and bipartite graphs, demonstrating extremal bounds connecting domination and energy. These theoretical contributions complement prior literature and open the door for further studies linking domination theory with spectral graph measures. Applications in chemistry, computer science, and biology underline the interdisciplinary significance of these results. Future work includes extending these bounds to random graphs, weighted networks, and dynamic models.

References

- [1] O. Ore, Theory of Graphs, American Mathematical Society, 1962.
- [2] C. Berge, Graphs and Hypergraphs, North-Holland, 1965.

- [3] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Fundamentals of Domination in Graphs, CRC Press, 1998.
- [4] M.A. Henning, Domination in Graphs: Core Concepts, Springer, 2013.
- [5] B. Zelinka, On domination in Cartesian products of graphs, Math. Slovaca, 1983.
- [6] I. Gutman, The energy of a graph, Ber. Math. Stat. Sekt. Forschungsz. Graz, 1978.
- [7] D. Cvetković, M. Doob, H. Sachs, Spectra of Graphs, Academic Press, 1980.
- [8] I. Gutman, X. Li, Graph Energy, Springer, 2006.
- [9] E. Estrada, Characterization of 3D molecular structure, Chem. Phys. Lett., 2000.
- [10] E. Estrada, The Structure of Complex Networks, Oxford Univ. Press, 2012.
- [11] R. Balakrishnan, The energy of a graph, Linear Algebra Appl., 2004.
- [12] X. Li, Y. Shi, I. Gutman, Graph Energy, Springer, 2012.
- [13] P. Hansen, H. Mélot, Variable neighborhood search for extremal graphs, Discrete Math., 2000.
- [14] M. Lepović, I. Gutman, Energy of trees with bounded degree, Bull. Acad. Serbe Sci. Arts, 2001.
- [15] A. W. Beveridge, Extremal domination in bipartite graphs, J. Graph Theory, 2010.
- [16] S. Favaron, M. Mahéo, J. Saclé, Some eigenvalue properties in graphs, Discrete Math., 1993.
- [17] R. A. Brualdi, Spectra of bipartite graphs, Linear Algebra Appl., 1991.
- [18] S. Das, I. Gutman, Bounds on graph energy, Linear Algebra Appl., 2004.
- [19] B. Zhou, On energy and domination of graphs, Ars Combinatoria, 2009.
- [20] X. Li, Energy and domination in bipartite graphs, Discrete Appl. Math., 2011.
- [21] P. Dankelmann, Bounds relating domination and energy, J. Comb. Theory, 2013.