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ABSTRACT 

An attempt has been made to obtain an analytical solution for 3-D meso-scale lee wave 

across the Assam-Burma hills (ABH) in India for an idealized barotropic mean flow. ABH 

has been approximated by two 3-D elliptical barriers, separated by a valley of some finite 

distance and is broadly north-south (NS) oriented. For more simplicity, the basic flow has 

been assumed to have two components U and V, normal to the major ridges of the elliptical 

barriers and parallel to the major ridges of the elliptic barriers respectively and a 

rectangular co-ordinate system in which, x-axis points towards east, y-axis points towards 

north and z-axis vertically upwards are considered and also U,V and Brunt-Vaisala 

frequency (N) are assumed to be invariant with vertical. The perturbation vertical velocity (

w ) and stream line displacement ( ) are expressed as a double integral. These two 

integrals have been evaluated asymptotically. Result of the study may be briefly summarized 

as followings: 

(i) The contours of the perturbation vertical velocity ( w ) and stream line 

displacement ( ) in the asymptotic solution are approximately crescent shaped 

in the horizontal plane and spread laterally with vertical.  

(ii) wand  in asymptotic solution decay downwind of the barrier along the line

0Uy Vx  . 
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1.  Introduction  

It is known that the airflow over mountains or hilly terrain is more disturbed than over the flat 

country. Stably stratified airflow across a meso scale mountain gives rise to Internal gravity 

wave, known as mountain wave, which is a potential aviation hazard. Theoretical studies of 

the perturbation in a stably stratified air stream by an obstacle may broadly be divided into 

two categories. In one category the obstacle is assumed to have an infinite extension in the 

crosswind direction, so that the flow essentially becomes two-dimensional (2-D). In the other 

category the obstacle is assumed to have finite extension in the crosswind direction and the 

flow becomes essentially three-dimensional (3-D). The study on 2-D mountain wave problem 

was first addressed by Lyra (1943). He obtained lee wave solution using Green’s functions, 

which decreased downstream and increased upward. Besides, studies on 2-D mountain wave 

problem may be found in Queney (1947,1948), Scorer (1953, 1954, 1956) etc. 

Scorer and Wilkinson (1956) first studied three dimensional lee waves of non uniform air 

stream over an isolated hill. In their result, lee waves were confined within a wedge-shaped 

region, the corner of which being vertical and through the hill top, where the half angle of the 

wedge was dependent on the air stream character. 

Wurtele (1957) considered the 3-D lee waves of incoming wind (U) and buoyancy frequency 

(V) to be 

independent of height over the orographic barrier in the form of semi-infinite plateau of 

height ‘h’ with 

narrow width ‘2d’ in the crosswind direction. He predicted the region of updraft, which had 

‘horseshoes’ shaped. Crapper (1959) presented a 3-D small perturbation approach of waves 

produced in a stably stratified air stream flowing over a mountain. He obtained the 

fundamental solution for a doublet disturbance in an air stream in which Scorers parameter 

remains constant and then it was extended to that for a disturbance caused by a circular 

mountain in the same air stream. He showed that circular mountain can give rise to waves 

which have greater amplitude than those produced by an infinite ridge in the same air stream.  

Sawyar (1962) studied three dimensional mountain waves problem for a vertically variation 

of the amplitude of the standing waves when the wind varied with height. He showed the 

solutions for specified two or three layer atmosphere to determined possible wavelengths in 

the horizontal direction for lee waves. Also he obtained approximately ‘crescent ’ shaped 

updraft region with concave downwind. 
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Das (1964) studied the influence of Himalaya, approximated as a layer 3-D circular 

mountain, using a linear baroclinic model which included the variation of Coriolis parameter 

(f) with latitude. He considered the effect of coriolis force and shown that the nodal lines in 

his solution were system of concentric circle. Krishnamurty (1964) studied the effect of 

realistic, steady and non-linear mountain waves problem. He showed that non-linear effects 

tend to move the disturbance upward at the upstream side of the mountain but does not cause 

changes in the flow pattern at the downstream side.  

Foldvic and Wurtele (1967) have studied numerically the transient nature of lee waves for 

idealized and realistic air-stream at various time intervals. They have showed the intensity of 

down-slope wind is intensified and that up-slope winds weakened, thus producing hydraulic 

jumps over the lee slope in some areas. 

Onishi (1969) has solved three dimensional mountain waves problem for arbitrary upstream 

condition. 

He obtained 3-D linearized equations by including friction in the governing equations. 

Pekelis (1971) developed his 2-D model to solve linearized 3-D problem. He obtained 

Vertical velocity fields and compared well with Sawyar (1962).  

De (1973) showed that air stream characteristics across Assam-Burma hills during winter 

season are favorable for the occurrence of orographic gravity waves. Using satellite picture, 

he also documented the observational evidence of orographic gravity wave across the Assam-

Burma hills. 

Smith (1978) presented mountain wave problem over the Blue-ridge mountain in the central 

Appalachians. He determined the pressure drag during the first two week of January 1974, 

several periods with significant wave drag were observed by him with pressure differences 

typically 50N/m
2
 across the ridge. Smith (1979) considered three dimensional lee wave in a 

stably stratified airflow consists of transverse lee wave and divergent lee wave. Smith (1980) 

studied the stratified hydrostatic lee waves over a bell shaped 3-D isolated circular mountain. 

He obtained the solutions for various part of the flow by using quasi-numerically technique 

where zonal wind (U) and buoyancy frequency (V) are constants with height. Somieski 

(1981) considered mountain waves problem for the stratified hydrostatic flow over 3-D 

circular mountain and including constant rotation and vertical wind shear of the mean flow. 

He solved the governing equations numerically. Sinha Ray (1988) presented a dynamical 

model for the perturbation vertical velocity over the orographic barrier. He  included the 

friction and solved numerically by using perturbation technique. 
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Dutta (2001) addressed two dimensional frictionless mountain waves across western ghat, 

where basic flow (U) and Brunt- Vaisala frequency (N) are idealistic. He found out the 

momentum flux and energy flux associated with mountain waves using by perturbation 

technique. Dutta et al. (2002) considered stably stratified airflow over a three dimensional 

meso-scale orographic barrier with elliptical contour. He solved the governing equations 

asymptotically and numerically. Dutta (2005) has developed three dimensional meso-scale 

numerical model then he applied this model to Western Ghats of India using real time RS 

data of Santacruz. 

Das et al (2013) developed three dimensional mountain waves problem over Assam-Burma 

hills (ABH) associated with idealistic basic flow. They obtained the asymptotic solutions 

using perturbation 

approach and compared with two dimensional problem of earlier authors. 

In India, the problems of lee waves across the Assam-Burma hills was first addressed by 

De(1970) and subsequently by De (1971), Farooqui and De (1974), Dutta and Naresh Kumar 

(2005) etc. Farooqui and De (1974) used a two dimensional model to calculate the flow over 

a small obstacle and large obstacle across the Assam-Burma hills. De (1970,1971) computed 

wavelength of lee waves over Assam-Burma hills using an approach, similar to Sarker 

(1966,1967). However, above all studies on mountain wave across Assam-Burma hills are 2-

D. Das et al (2013) studies 3-D lee waves across the Assam-Burma hills for idealized basic 

flow, where, both stability and wind in basic flow of one component (U) remain invariant 

with height. 

From the foregoing discussions it appears that in most of the studies on 3-D mountain wave 

problem, the basic flow is assumed to consist of only that component (U), which is normal to 

the major ridge of the mountain. Those studies did not consider other component of basic 

flow (V), which is parallel to the major ridge of the mountain. But in the real atmosphere at 

any level horizontal wind may have both components, viz., the component normal to the 

major ridge as well as the component parallel to the major ridge. So, it is necessary to 

investigate, at least qualitatively, the effect of ‘V’ component on the pattern of perturbation 

vertical velocity ( w ) and stream line displacement ( ) associated with 3-D lee wave. 

The objective of the present study is to develop a 3-D lee wave model across the Assam-

Burma hills with a basic flow having both the components ‘U’ and ‘V’ and thereby to study 

the effect of ‘V’ component. 
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2.  Data 

For the present study we have selected the data of the only station on the upstream side is 

Guahati (26.19
0
N Latitude and 91.73

0
E Longitude).  The average of 0000UTC and 

1200UTC RS/RW data of Guahati for those dates, which corresponds to the observed 

lee waves across ABH, as reported by De (1970, 1971) and Farooqui and De (1974), has 

been obtained from Archive of India Meteorological Department, Pune.  

 

3.  Methodology 

In the present study an adiabatic, steady state, non rotational, laminar, non viscous, 

frictionless and Boussinesq 3-D barotropic mean flow with idealistic vertical variation of 

wind and temperature across the Assam-Burma hills, have been considered. Present study is 

similar to the study of Dutta (2003) in most of the aspects, except the lower boundary 

condition. Similar to Dutta (2003), in the present study also it is assumed that the basic 

consists of two components U and V are normal and parallel to the major ridge of the 

elliptical barriers respectively and they are constant with vertical and the buoyancy frequency 

(N) is also assumed to be constant with vertical and a rectangular co-ordinate system in 

which, x-axis points towards east, y-axis points towards north and z-axis vertically upwards 

is considered. Using the technique followed by Dutta (2003) , we obtain the following 

vertical structure equations for perturbation vertical velocity ( w ) and for perturbation 

vertical streamline displacement ( ): 

222 2 2 2
2 20 01

12 2 2 2
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ˆ ( ) 1 1
ˆ( ) 0
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k l w

z Uk Vl dz dz
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Where 1 1̂
ˆ ,w  are double Fourier transforms of  1 1,w    respectively and 
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0
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Brunt-Vaisala frequency.  
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Since in the equations (1) and (2) the terms 









2

0

2

0
2

1

dz

d 


 and 

2

0

2

0
4

1









dz

d


 are less, 

by at least one order of magnitude, than the other terms in the square bracket, the equation (1) 

and (2) reduced to 

 
2 2

2 21
12 2

ˆ
ˆ( ) 1 0

( )

w N
k l w

z Uk Vl

 
    

  
      (5) 

2 2
2 21

12 2

ˆ
ˆ( ) 1 0

( )

N
k l

z Uk Vl




 
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  
        (6) 

Equations (5) and (6) are solved subject to the following boundary conditions: 

(i) At the lower boundary stream line pattern follow the contour of the mountain, 

(ii)  At the upper boundary radiative boundary condition is imposed i.e., mountain 

waves are allowed to propagate vertically. 

Now using the upper boundary condition (ii), the general solution of equation (14) and (16) 

can be taken as 

  imzAezlkw ,,ˆ
1          (7)  and 

  imzBezlk ,,ˆ
1

          (8) 

 where A, B are constants to be determined using lower boundary condition and m  is given 

by, )(1
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
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
 . Clearly m  may be recognized as the vertical wave 

number of the vertically propagating mountain waves. 

Now at the lower boundary i.e., at the surface the airflow follows the contour of the 

mountain, the profile of which is given by  
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,
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dx

h

b
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x

h
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





             

(9) 

The profile of ABH barrier (9) is given by Figure 1. In the present study the values of 11,,a d h

and 2h are same as those in De (1971) and 2.5b a   as in Dutta (2005), as in Das et al 

(2013). Therefore, we take 1 120 , 2.5 , 45 , 0.9a km b a d km h km    and 2 0.7h km .If 

ˆ( , )h k l  be the double Fourier transformation of ( , )h x y , then expression of ˆ( , )h k l  given as  

     1 2 2 2 2

1 2 0, 2ˆ ikd
k l ab h h e K a lh k b 

                (10) 
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Where 2 2 2 2

0( )K a k b l is the Bessel function of second kind of order zero. Details 

derivation for the expression are available in Das et al. (2013). At the lower boundary we 

have  

 

       1, ,0 , ,0 ( , )x y x y h x y    .  
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Again the linearized lower boundary condition for 'w  may be given by 
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x y x y
w x y w x y U V

x y
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      1
ˆˆ ˆ, ,0 , ,0 ( ) , ,0w k l w k l i kU lV k l                  (11) 

Hence,    2 2 2 2

1 2 0A 2 ( )ikdiab h h e K a k b l    .  

Using the values of A and B in (7) and (8) respectively,  we get  

    2 2 2 2

1 1 2 0, , 2 ( )ˆ ikd imzk l z iab h h e K a k b l ew         (12)  

    2 2 2 2

1 1 2 0
ˆ , , 2 ( )ikd imzk l z ab h h e K a k b l e           (13) 

Therefore, the perturbation vertical velocity and stream line displacement at any point 

( , , )x y z  

 are given by respectively  
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The above two equations (14) and (15) reduce to  
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Now, Dutta(2002) have shown that 
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Here also the integrals 
1

I  and 
2

I  are approximated by their asymptotic expansion using 

method of stationary phase. According to this method, first those points in the wave number 

( , )k l domain are found out, where the phase ( )kx ly mz  is stationary. Those points are 

termed as saddle points. Then entire integrand is expanded in Taylor’s series about the saddle 

point and the first term of the expansion is retained as the asymptotic approximation of the 

integrals, which is valid at far down wind location of the mountain. The asymptotic 

expansion for wand  is given by following :  
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Details of the derivation of the equation  (20) and (21) are given in appendix I.   

 

4. Result and discussion  

Now from (20) it is clearly that at 1 0z Z  i.e., at the ground surface the vertical velocity (

w ) vanishes except 0, 0x y  . This represents the lee waves (Dutta, 2003), (Das et al, 

2013). The geometrical description of wave pattern in 3-D is obtained by substituting 2 0Y  , 
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level ( 0)z  for 2 0Y  , wand can be written as:  

 

   

   

2 1

2 2 2 2
3 2 2

2 22 0 02 2 2 2
2 2 1 2 22 1

3
2 2 2 22

2 2

1

2

2
2

0

1
1

,0,

cos
sin

2( )
sin

g R z

R T

w X Z

NX a U b V
abN X

h X Z NdU V X Z
U V

X Z U V
X Z

K

e

h


 







 

 


    
       

    
  

 
 

         (22)  
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 

   
 

 

2 1

2 2 2 2
2 2

2 22 0 02 2 2 2
2 2 1 2 22 1

2 2 2 2

2 1 2 2

1 2 1

0

2

,0,

cos
cos

2( )
cos

g R z

R T

X Z

NX a U b V
abN X

h X Z NdU V X Z
U V

X Z
X Z

K

U V
h

e





 






 

 


    
       

    
   

 
 

        

……(23) 

 

From the above expressions of wand    are clearly seen that, both of them decay 

downstream of the elliptical barrier at a rate proportional to 1

2X   i.e., inversely proportional 

to the distance along the line  

0Uy Vx  . This may be attributed to the presence of Bessel function and the terms 

2

2

3
2 2 2
2 1( )

X

X Z
 and 

2

2

2 2

2 1( )

X

X Z
respectively. 

De (1973) investigated that the airstream characteristic across the ABH during winter season 

is favourable for the occurrence of the lee waves. Using the equations (20) and (21) the 

perturbation vertical velocity ( w ) and stream line displacement ( ) are computed at 

different levels for a typical lee wave case cross the ABH during winter season, taken the 

order of magnitude of ‘U’ is 10m/sec. ‘V’ is of 7m/sec. and that of ‘N’ is 0.01/sec. Using the 

values of ‘U’, ‘V’ and ‘V’ we computed the values of w  and  at four levels only, viz., 

1.5km, 3km,6km and 9km above mean see level. 
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Figure 2(a-d). Down stream variation of 𝑤  along the line 𝑈𝑦 − 𝑉𝑥 = 0, at 1.5km, 3km, 6km 

and 9km above mean see level respectively. 

 

The downstream variation of the vertical velocity ( w ) and stream line displacement ( ) 

have been shown by Figure 2(a-d) and Figure 3(a-d) respectively, along the line 0Uy Vx  , 

at 1.5km, 3km, 6km and 9km above mean sea level, which approximately resemble to 

850hPa, 700hPa, 500hPa and 300hPa respectively.  
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Figure 3(a-d). Down stream variation of 𝜂  along the line 𝑈𝑦 − 𝑉𝑥 = 0, at 1.5km, 3km, 6km 

and 9km above mean see level respectively. 

 

The figures show  that both w  and    are downstream decay in the amplitude of w  and 

respectively, along the line 0Uy Vx  , in conformity with earlier investigators. 

The contours of w  and   have been shown in the Figure 4(a-d) and Figure 5(a-d) 

respectively, at 1.5km, 3km, 6km and 9km above mean sea level, which approximately 

resemble to 850hPa, 700hPa, 500hPa and 300hPa respectively. 
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Figure 4(a-d). Contours of 𝑤   at 1.5km, 3km, 6km and 9km above mean see level 

respectively. 

 

The contours of both  w  and   are maximum updraft regions are approximately crescent 

shaped, tilt upwind and symmetric about the line 0Uy Vx  , concave to the down wind 

direction and lateral spreading with vertical, implying divergent lee wave, which is in 

qualitative conformity with finding from earlier results. Wurtele(1957) obtained crescent 

shaped updraft region, symmetric about 𝑥-axis (i.e., about the line 𝑦 = 0), taking constant 

basic flow with only U-component .  
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Figure 5(a-d). Contours of 𝜂  at 1.5km, 3km, 6km and 9km above mean see level 

respectively. 

 

Dutta (2003) has been shown that the maximum updraft regions are crescent shaped and 

symmetric about the line .Uy Vx const  , taken constant basic flow of both components 

(U,V). Now due to the presence of  V-component, there is a meridional forcing acting at all 

level and occurring the symmetric crescent shaped updraft region to rotate through an angle 

1( / ).tan V U  

5. Conclusions 

In this investigation, we have presented the effect of 3-D meso-scale lee wave across the 

Assam-Burma hills following an asymptotic approach. In the sequel, we have made some 

interesting observation. Moreover, 

(i) The solutions for  w  and   show that along the line 0Uy Vx   both decay down 

wind of the barrier at a rate proportional to 1

2X    across the ABH. 

(ii) In the horizontal plane the contours for  w  and  show crescent shaped updraft 

region, which are inclined at an angle 1( / ).tan V U  

(iii) Asymptotic solution for both  w  and   across the ABH, show upwind tilt along the 

line 0Uy Vx   and spread laterally with height . 
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Appendix-I 

Hsu’s (1948) theorem: In the theorem, he has shown that if     , , .x y h x y  and 

  ( , ), h x yf x y e are continuous functions defined on a region S such that,   

(1)    , ,[ , ]nx y f x y  are absolutely  integrable  over S for n=0,1,2.............. 

(2) 
2 2

2 2
, , ,

f f f f

x x y y

   

   
exist and continuous over S. 

(3) ( , )h x y has an absolute maximum value at an interior pt 0 0( , )x y such that  

 At 0 0( , )x y  
2 2 2

2

2 2
0, ( ) 0

h h h h h

x y x y x y

    
   

     
 

(4)  ,x y  is continuous at 0 0( , )x y and 0 0( , ) 0x y  .Now if C be an analytic curve 

passing through the point 0 0( , )x y , such that the region S is divided into two sub 

regions 1S  and 2S . Then the integral  

  

(5)    , [ , ]nx y f x y ds∬   taken over either of 1S  and 2S asymptotic to  

 
 

0 0

0 0 0 0

2
2 2 2

2 2

( , )

( , )[ , ]n

n

x y

x y f x y

h h h

x y x y



    
  

      
 

Now to evaluate the above integrals 1I  and 2I   in the equations (27) and (28) respectively, by 

substituting following :  

2 2 2 2 2 2

1 1 1, ,
X U V Y U V Z U V

x y z
N N N

  
    and 1 1

2 2 2 2
,

N N
k l

U V U V

 
 

 
 

Now,      
 

 

2 2 2 2 2
1 12

22 2

1 1

1
N U V

m
U V U V

 

 

   
  

   

 

And 
 

 
2 2

2 2

1 1 1 1 1 1 12

1 1

1
U V

kx ly mz X Y Z
U V

   
 

  
       

  

 

The above substitution, two integrals 1I  and 2I  reduce to  
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 
 

 
1

2 2
1 1 1 1 1 1

2 2 2 2 3
1 1

1 1 1 1 2 0 1 132 2 2 2 2

N

i X Y ZU V
N a b N

I i U V h h e K е d d
U V U V



   
   



  
 



   
    

       
    

 
 

1

2 2
1 1 1 1 1 1

2 2 2 2 3
1 1

2 1 2 0 1 12 22 2

N

i X Y ZU V
N a b N

I h h e K е d d
U VU V



   
 



















   
   

       
   

Where,  
 

 
2 2

2 2

1 1 12

1 1

1
U V

U V
  

 

  
   

  

 

Again following substitutions are made:  

1 1cos , sinX r Y r    and 
1 1cos , sin        

 

Hence     2 2

1 1 1 1 1 1 1 1cos secX Y Z r Z                  (say), where 

1tan
V

U
   
  

 
 

Thus finally the integrals  1I  and 2I   reduce to  

 

 
 

1
2 2

cos 2 2 2 2 32

1 1 2 0 32 2 2 2 2
0

2

cos sin
cos sin

ii Nd
U V

N a b N e
I i U h h e K d d

U V U V

   



   
     

 




   
     

      
 

  

 

1
2 2

cos 2 2 2 2 22

2 1 2 0 2 22 2
0

2

cos sin ii Nd
U V

N a b N e
I h h e K d d

U VU V

   



   
 

 




   
    

     
   

 

Now, to evaluate the above integrals  1I  and 2I  , we follow the method of approximation of 

double integrals of large numbers (Hsu, 1948). 

We assume      and     then   2 2

1 1cos sec ( , )r Z h             

Here   ( , ), ihf e     and   1n  ; for  1I , 

        3 2

0, arg cos sinp K U V           and   for 2I  ,   2

0, (arg)p K    ; 

where 
2 2

N
p

U V



 . 

Also clearly , ,h f satisfy all the conditions of Hsu’s theorem. 
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Now at some point 
0 0( ),, ( , )h     to be stationary, if require 

0 0( , )

0
h

 

 
 

 
and 

0 0( , )

0
h

 


 
 

 
 

This again implies that,   1 0
0 2 2

0 0

cos( ) 0
sec

Z
r


 

 
  


and 

2

1 0 0
0 0 2 2

0 0

sec tan
sin( )

sec

Z
r

 
  

 
 


 

 Hence 1 2 2
0 0 2

1

tan
X Y

  


  
    

 
 and

4 2

2 1 1 2 2

0 3

1 1

( )X Z X Y

R







  

 Where 2 2 2 2 2 2

1 2 1 1 1 1 2, c s, oY Z R X X r        and 2 sinY r   

Now,       1 1
0 0

1

,
Z R

h  


  and 

0 0

2
2 2 2

2 2 2 1 1
12 2 4 2 2

1 2 2
( , )

1 4 0
h h h X Y Z R

R
X Y

 
    

       
                 

 

   
0 0

2 2

cos4 2 2

2 1 1 2 2

0 0 1 2 03

1 1

, arg
i Nd

U V
X Z X Y

h h e K
R

 


  





 
   
 
 

 

By Hsu’s theorem we get  

 
 

 0 0

0 0 0 0

1 2 2 2
2

,2 2

, [ ( , )]

[ ( ) ]

n

n

f
I

h h h
 

    

   




  


   

         here 1n   

 

0 0

2 2

cos

3

1 2 1 1 2

1 1
1 2 2

1

exp
( )

i Nd
U Vi A N X Z h h e

Z R
I i

U V

 








 
 
      
  

 

. 

Similarly,            

 

0 0

2 2

cos

2

1 1 2

1 1
2 2 2

1

exp
( )

i Nd
U VA N h h e

Z R
I i

U V

 








 
 
      

  
 

                     

 

   Now,          Real part of 
 

3

1 2 1 1 1 0 0 1 1
1 2 12 2 2 2

1 1

cos
sin sin

A N X Z Z R Z R
I h Nd h

U V U V

  

 

     
      

     
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 Real part of
 

2

1 1 1 0 0 1 1
2 2 12 2 2 2

1 1

cos
cos cos

A N Z R Z R
I h Nd h

U V U V

  

 

     
      

     

 

Substituting the values of  
1I  and 

2I  in the equations (26) and (27) respectively, we get 

 
  3

1 2 1 1 1 0 0 1 1
2 2 1 2 12 2 2

1

2

2
1 1 1

A abN X Z Z R τ cosβ Z R
, , h sin Nd h sin

ρ R (U V ) ρ ρU V

g R z

R Tw X Y Z e






    

        
     

  

 
 

2

2

1 1 1 0 0 1 1
2 2 1 2 12 2 2 2

1 1

A abN Z R τ cosβ Z R
, , h cos Nd h cos

(U V ) ρ ρU V

g R z

R TeX Y Z










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