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ABSTRACT 

In this study free axial vibration of an elastically supported beam is analyzed. The 

supports are modeled by elastic translational springs. The frequency values for the first three 

vibration modes of the beam are obtained for various values of spring constants and 

presented in the tables. The frequency values for the spring constants of zero and infinity are 

also compared, respectively, with the ones of free and fixed beams and nearly the exact 

values are obtained with negligible error percentages. 

Keywords: Axial vibration, Beam, Elastic Support, Frequency 

1. Introduction 

In practice, the representation of a beam by a discrete model is an idealized model; 

however, in fact, beams have continuously distributed mass and elasticity. Mostly, especially 

for the axially vibration, beams are modeled as continuous systems having infinite number of 

degreed of freedom [1-6]. 

In this study, the free vibration analysis of an elastically supported axially vibrating 

beam is made. The elastic springs against translation are used to model the supports. The 

differential equation of motion of the axially vibrating beam is solved by separation of 

variables method [7] and the displacement function is obtained. The boundary conditions are 

written for the elastic supports. The natural frequencies for the first three modes are obtained 

for the various values of the spring constants. The results obtained for the spring constant 

value of zero are compared with the frequency values of free beam whereas the ones for the 

spring constant value of infinity are compared with the frequency values of fixed beam. In 

addition, the frequencies obtained for the left end spring constant value of infinity and the  
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right end spring constant value of zero are compared with the frequency values of cantilever 

beam. The axially vibrating beam considered in the study is assumed to be homogeneous and 

isotropic. 

2. Solution of Equation of Motion for an Axıally Vıbratıng Beam 

An axially vibrating beam, given in Figure.1, with the distributed mass m, the length 

L, the modulus of elasticity E, the cross-section area A and the axial rigidity AE has a 

dimensional differential equation of motion for free vibration as [8] 

 

m, L, AE 

u(x,t) 

x 

 

Figure 1: An Axially Vibrating Beam 

𝜕2𝑢(𝑥 ,𝑡)

𝜕𝑥2 −
𝑚

𝐴𝐸

𝜕2𝑢 𝑥 ,𝑡 

𝜕𝑡2 = 0         

(1) 

where u(x,t) is the displacement function of the beam in terms of both displacement x and 

time t. Application of the separation of variables method to Eq. (1) as in the form of Eq. (2) is 

commonly used in vibration analysis of beams. 

𝑢(𝑥, 𝑡) = 𝑋 𝑥 .𝑇 𝑡 = 𝑋 𝑥 . [𝐴. sin 𝑡 + 𝐵. cos 𝑡 ]      

(2) 

In Eq. (2), X(x) is the eigenfunction named as shape function, T(t) is time function,  is the 

eigenvalue of the solution named as natural frequency and A, B are constants. 

The derivatives used in Eq. (1) can, therefore, be written as 


2𝑢 𝑥 ,𝑡 

𝑥2 = 𝑢′′  𝑥, 𝑡 = 𝑋′′  𝑥 .  𝐴. sin 𝑡 + 𝐵. cos 𝑡  = 𝑋′′  𝑥 .𝑇 𝑡     

(3) 

2𝑢 𝑥 ,𝑡 

𝑡2 = 𝑢  𝑥, 𝑡 = 𝑋 𝑥 . (−2) 𝐴. sin 𝑡 + 𝐵. cos 𝑡  = −2 . 𝑋 𝑥 . 𝑇 𝑡     

(4) 

where (
//
) and (¨) denote the second order derivative due to x and t, respectively. Substitution 

of Eq. (3) and Eq. (4) in Eq. (1) gives the governing equation of motion in the form as 

 

 



 

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories. 

GE-International Journal of Engineering Research (GE-IJER) ISSN: (2321-1717) 

43 | P a g e  

 

 

 𝑋′′  𝑥 .𝑇 𝑡 +
𝑚2

AE
𝑋 𝑥 .𝑇 𝑡 = 0    𝑋′′ 𝑥 +

𝑚2

AE
𝑋 𝑥 = 0     0 ≤ 𝑥 ≤ 𝐿   

 

  (5) 

for   𝛼2 =
𝑚2

AE
  𝑋′′  𝑥 + 𝛼2𝑋 𝑥 = 0       

(6) 

The characteristic equation and the solution of Eq. (6) is given as follows as D being d/dz: 

𝐷2 + 𝛼2 = 0   →     𝐷1,2 = ±𝑖𝛼        (7) 

𝑋(𝑥) = 𝐶1 . sin 𝛼𝑥 + 𝐶2. cos 𝛼𝑥         (8) 

Eq. (8) gives the shape function of the axially vibrating beam due to the displacement 

variable, x. Therefore, from Eq. (2), the displacement function of the axially vibrating beam 

has the form of Eq. (9). 

 𝑢 𝑥, 𝑡 = 𝑋 𝑥 .𝑇 𝑡 =  𝐶1. 𝑠𝑖𝑛 𝛼𝑥 + 𝐶2 . 𝑐𝑜𝑠 𝛼𝑥  .𝑇(𝑡)      

(9) 

3. Boundary Conditions 

 

m, L, AE x=0 x=L 

k0 kL 

 

Figure 2: Elastically Supported Axially Vibrating Beam 

Two boundary conditions have to be written for the elastically supported beam in 

Figure.2 since two integration constants (C1, C2) are obtained in the solution of second order 

differential equation of motion. The boundary conditions written for the left and the right 

ends of axially vibrating beam are given, respectively, as [9] 

for x=0  𝑁 𝑥 = 0, 𝑡 = 𝐴𝐸
𝜕𝑢 (𝑥=0,𝑡)

𝜕𝑥
= 𝐴𝐸𝑢′ 𝑥 = 0, 𝑡 = 𝑘0.𝑢(𝑥 = 0, 𝑡)

 (10) 

for x=L 𝑁 𝑥 = 𝐿, 𝑡 = 𝐴𝐸
𝜕𝑢 (𝑥=𝐿,𝑡)

𝜕𝑥
= 𝐴𝐸𝑢′ 𝑥 = 𝐿, 𝑡 = −𝑘𝐿 .𝑢(𝑥 = 𝐿, 𝑡)

 (11) 
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where ko and kL are the spring constant values of, respectively, the left end and the right end 

supports, N(x,t) is the axial force. If Eq. (9) and its derivative are substituted into Eq. (10) and 

Eq. (11) one gets the following relation between the coefficient matrix and the integration 

constants. 

  
𝑘11 𝑘12

𝑘21 𝑘22
 .  

𝐶1

𝐶2
 =  

0
0
    →     𝑘 .  

𝐶1

𝐶2
 =  0     

 (12) 

  𝑘 =  
𝑘11 𝑘12

𝑘21 𝑘22
 = 0        

 (13) 

where  𝑘  is the coefficient matrix and 𝑘11 =∝, 𝑘12 =
−𝑘0

𝐴𝐸
, 𝑘21 =∝. cos ∝ 𝐿 +

𝑘𝐿

𝐴𝐸
. sin ∝ 𝐿 , 𝑘22 = −∝. sin(∝ 𝐿) +

𝑘𝐿

𝐴𝐸
. cos(∝ 𝐿). For non-trivial solution equating the 

determinant of the coefficient matrix of Eq. (12) to zero, as in Eq. (13), will give the 

eigenfrequencies of the axially vibrating beam with elastic supports. These frequencies are 

computed by a program written by the author considering the secant method [10]. 

 

 

4. Numerical Analysis 

The first three natural frequencies of the axially vibrating beam with elastic supports 

are calculated for the k0 and kL values of 0, 10
3
, 10

6
, 10

9
, 10

12
 and 10

18
, the beam length of 

L=1 m. and the modulus of elasticity of E=2100000 kg/cm
2
. IPB-100, IPB-300 and IPB-600 

profiles are used for numerical analysis with the mechanical properties given in Table 1 

where h is height, G is weight per length, A is cross-section area and AE is axial rigidity of 

the corresponding profile. The distributed mass of the beam m is calculated from G/g as g 

being the acceleration of gravity with the value of 981 cm/sn
2
. 
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Table 1: The Mechanical Properties of the Profiles Used in This Study 

Profile 

h 

(cm) 

G 

(kg/cm) 

A 

(cm
2
) 

AE 

(kg) 

IPB100 10 0.081 10.3 21630000 

IPB300 30 0.422 53.8 112980000 

IPB600 60 1.22 156 327600000 

  

The frequency values computed due to different values of the spring constants for the 

both ends are presented in Table 2, Table 3 and Table 4 for, respectively, IPB-100, IPB-300 

and IPB-600. 

Table 2: Frequencies Computed due to Different Values of the Spring Constants for IPB-100 

k0=kL 10
3
 10

6
 10

9
 10

12
 10

15
 10

18
 

1 492 11462 16073 16079.403691 16079.410640 16079.410647 

2 16095 24039 32145 32158.807382 32158.821280 32158.821294 

3 32167 37876 48218 48238.211074 48238.231921 48238.232041 

 

 

 

 

Table 3: Frequencies Computed due to Different Values of the Spring Constants for IPB-300 

k0=kL 10
3
 10

6
 10

9
 10

12
 10

15
 10

18
 

1 216 6355 16064 16100.077062 16100.113406 16100.113442 

2 16104 18558 32128 32200.154125 32200.226812 32200.226884 

3 32202 33577 48192 48300.231187 48300.340217 48300.340327 
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Table 4: Frequencies Computed due to Different Values of the Spring Constants for IPB-600 

k0=kL 10
3
 10

6
 10

9
 10

12
 10

15
 10

18
 

1 127 3912 16020 16124.028685 16124.134224 16124.134330 

2 16126 17064 32039 32248.057370 32248.268448 32248.268659 

3 32249 32740 48058 48372.086055 48372.402672 48372.402989 

 

In Table 5, the frequency values obtained for the spring constant values of zero and 

infinity (k0=kL=10
18

 in this study) are compared with the frequency values obtained for either 

free or fixed beams that have the same frequency equation. 

Table 5: Comparison of Frequencies Computed for k0=kL=0 and k0=kL=∞ (10
18

 in this study) 

with the Frequencies of Free or Fixed Beam 

  

k0=kL=0 

k0=kL=∞ 
𝝎𝒊 = 𝒏𝒊

𝝅

𝑳
 
𝑨𝑬

𝒎
 

IPB-100 

1 16079.410647 16079.410680 

2 32158.821294 32158..821360 

3 48238.231941 48238.232041 

IPB-300 

1 16100.113442 16100.113434 

2 32200.226884 32200.226868 

3 48300.340327 48300.340302 

IPB-600 

1 16124.134330 16124.134330 

2 32248.268659 32248.268660 

3 48372.402989 48372.402990 
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The frequency values computed due to different values of the spring constant k0 and 

kL=0 are presented in Table 6, Table 7 and Table 8 for, respectively, IPB-100, IPB-300 and 

IPB-600. 

Table 6: Frequencies Computed due to Different Values of k0 and kL=0 for IPB-100 

k0=kL 10
3
 10

6
 10

9
 10

12
 10

15
 10

18
 

1 348 6640 8038 8039.703585 8039.705322 8039.705324 

2 16087 20470 24114 24119.110754 24119.115966 24119.115971 

3 32163 35189 40190 40198.517923 40198.526609 40198.226618 

 

 

Table 7: Frequencies Computed due to Different Values of k0 and kL=0 for IPB-300 

k0=kL 10
3
 10

6
 10

9
 10

12
 10

15
 10

18
 

1 153 4214 8041 8050.047626 8050.056712 8050.056721 

2 16102 17407 24123 24150.142878 24150.170136 24150.170163 

3 32201 32903 40205 40250.238131 40250.283560 40250.283605 

 

Table 8: Frequencies Computed due to Different Values of k0 and kL=0 for IPB-600 

k0=kL 10
3
 10

6
 10

9
 10

12
 10

15
 10

18
 

1 90 2700 8036 8062.040754 8062.067138 8062.067165 

2 16125 16607 24108 24186.122261 24186.201415 24186.201495 

3 32249 32496 40179 40310.203768 40310.335692 40310.335824 
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In Table 9, the frequency values obtained for the spring constant values of k0=∞ and 

kL=0 are compared with the frequency values obtained from the frequency equation of 

cantilever beam. 

 

Table 9: Comparison of Frequencies Computed for k0=∞ and kL=0 with the Frequencies of 

Cantilever Beam 

  

k0=∞ 

kL=0 
𝝎𝒊 =

 𝟐𝒏𝒊 − 𝟏 

𝟐

𝝅

𝑳
 
𝑨𝑬

𝒎
 

IPB-100 

1 8039.705324 8039.705340 

2 24119.115971 24119.116020 

3 40198.226618 40198.226700 

IPB-300 

1 8050.056721 8050.056717 

2 24150.170163 24150.170151 

3 40250.283605 40250.283585 

IPB-600 

1 8062.067165 8062.067165 

2 24186.201495 24186.201495 

3 40310.335824 40310.335825 

 

5. Conclusions 

In this study free longitudinal vibration of an elastically supported beam is made. The 

natural frequency values are obtained for different values of spring constants at both ends and 

presented in tables. It can be seen from Tables 2, 3, 4 and Tables 6, 7 and 8 that as the spring 

constant values increase through a value of 10
9
 the frequency values rapidly increase, 

however, at the value of 10
9
 the frequency values are so close to its ideal limit obtained from 

the frequency equation of ideal support condition, being free or fixed. As the spring constant  
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value increases from 10
9
 to theoretically infinity (practically 10

18
 in this study) the frequency 

values show gentle increase and at the spring constant value that represents infinity the 

frequency value reaches its limit value for the considering support. Increasing the height of 

the beam section causes a decrease in frequency values for the spring constant values of less 

than 10
9
 and an increase for the spring constant values from 10

9
 to infinity at which the 

frequency values show an increase no longer. 
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